Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Understanding and predicting the geographic distributions of
Phlebotomine sand flies in and around Europe

Danyang Wang

danyang , wang@uur ,nl

Wildlife Ecology and Conservation group, Wageningen University, The Netherlands https://orcid.org/0000-0002-0461-3256

Anouschka R. Hof
Wildlife Ecology and Conservation group, Wageningen University, The Netherlands https://orcid.org/0000-0001-6743-0089

Kevin D. Matson
Wildlife Ecology and Conservation group, Wageningen University, The Netherlands https://orcid.org/0000-0002-4373-5926

CLIMOS data providers
Frank van Langevelde
Wildlife Ecology and Conservation group, Wageningen University, The Netherlands https://orcid.org/0000-0001-8870-0797

Research Article

Keywords: Climate change, land-use, moisture, phlebotomine sand fly, species distribution modelling, suitable habitat
Posted Date: June 13th, 2025

DOI: https://doi.org/10.21203/rs.3.rs-6670769/v1

License: @ ® This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: The authors declare no competing interests.

Page 1/17


https://doi.org/10.21203/rs.3.rs-6670769/v1
https://doi.org/10.21203/rs.3.rs-6670769/v1
https://orcid.org/0000-0002-0461-3256
https://orcid.org/0000-0001-6743-0089
https://orcid.org/0000-0002-4373-5926
https://orcid.org/0000-0001-8870-0797
https://doi.org/10.21203/rs.3.rs-6670769/v1
https://creativecommons.org/licenses/by/4.0/

Abstract

Climate and land-use changes influence the transmission of vector-borne diseases by affecting the distribution and survival of disease vectors.
Numerous diseases are transmitted by phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae), including leishmaniasis. Several major
sand fly-borne diseases are responsible for high global disease burdens and high socio-economic costs. In Europe, over 20 known sand fly
vector species are largely confined to the Mediterranean Basin, yet records of sand fly presence further north increase. Global warming is
predicted to drive the spread of sand flies to large areas of Europe in the 21t century, an effect likely to be exacerbated by anthropogenic
factors. However, the constraints to the geographic distributions of sand flies are not well understood. This study aims to increase the
understanding of the drivers of the geographic distributions of sand flies, using species distribution modelling to systematically test links
between sand fly occurrences and climatic, land-use, lithological, biodiversity and human population variables in Europe and adjacent
Mediterranean regions. We found that moisture is the most important environmental variable both in explaining and in predicting sand fly
occurrences. The projected suitable habitats are larger than the current known sand fly distributions, and these habitats are expected to expand
due to changes in climate and land-use.

1. Introduction

Predicting changes in the spatial distribution of organisms due to changes in climate and land-use requires understanding the determinants of
spatial distributions. Such predictions and understanding may be especially relevant for disease vectors, as changes in their spatial distributions
may have big consequences for human and animal health. Arthropod disease vectors may be particularly sensitive to changes in ambient
temperatures, since their life cycle, survival and reproduction are temperature-dependent (Schowalter, 2022). One group of arthropod disease
vectors that seem to be affected by changes in climate and land use is the Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae).
Sand flies can transmit numerous parasites, including the protozoan Leishmania spp., which can cause leishmaniasis, and Toscana virus
(TOSV), which can cause meningitis and encephalitis (Ayhan & Charrel, 2020; Maroli et al., 2013). Leishmaniasis is the second largest parasitic
disease in terms of affected human population (Maroli et al., 2013) and the deadliest neglected tropical disease worldwide (Lozano et al., 2012).
Of the > 1000 sand fly species that have been described globally, 98 are proven or suspected vectors of Leishmania spp.(Maroli et al., 2013),
TOSV (Ayhan et al., 2020), or both. In and around Europe, over 20 vector species (Online Resource 1) were largely confined to the Mediterranean
countries (Alten et al., 2016; Maroli et al., 2013) until 25 years ago. More recently, small but permanent populations of some sand fly species
have been discovered at higher latitudes and altitudes, and these expanded distribution ranges are likely due to climate change (Chalghaf et al.,
2018; Maroli et al., 2013; Medlock et al., 2014). With the predicted climate trend, sand flies are expected to reach large parts of north-western
and central Europe in the 21st century (Koch et al., 2017). Advancing our understanding of the ecology of sand flies, specifically the factors
shaping their distributions, will help inform surveillance efforts.

Thus far, studies have modelled sand fly geographic distributions using temperature and precipitation as predictor variables (e.g.(Chalghaf et

al., 2018; Cunze et al., 2019; Koch et al., 2017)), and most have focused on predictive performance. However, the best variables for predicting

sand fly distributions do not necessarily ecologically drive sand fly occurrences (Sriboonchitta et al., 2019). Thus, ecological mechanisms that
underlie sand fly occurrence are poorly understood.

This study aims to improve our understanding of sand fly ecology and predict the distributions of sand flies in and around Europe. We leverage
existing records of species observations and open access datasets to test relations between sand fly occurrences and climatic, land-use,
lithological, biodiversity and human population variables on a continental scale. Air temperature and air moisture directly affect sand fly survival
and life cycles (Lawyer et al., 2017; Volf & Volfova, 2011), and growing season affects vegetation (Brun et al., 2022) that shapes sand fly habitat.
Likewise, land use reflects vegetation type and human disturbance (McKeon et al., 2023), both of which can affect sand fly habitat. Different
ecosystems, which can be influenced by lithological variation via matter fluxes (Dirr et al., 2005), provide distinct habitats and resources for
sand flies (Ayala, 1973; Memmott, 1991). Lastly, biodiversity indicators and human population density were used to approximate the sand fly
host community composition. Our analyses differentiated the drivers that most affect sand fly occurrences (and thereby help explain why sand
flies occur where they do) from the variables that best discriminate between locations where sand flies are present or absent (and thereby help
predict future sand fly distributions).

2. Method
2.1 Sand fly observations

The study area is Europe and neighboring areas (Arnal et al., 2019), bounded by W25°15’ in the west, E50°15’ in the east, N22°45’ in the south,
and N72°15’ in the north (Fig. 1). Sand fly observational data from 2005 to 2023 (Online Resource 2) were mainly obtained from previous
projects of members of the current team (EU-Horizon project Climate Monitoring and Decision Support Framework for Sand Fly-borne Diseases
Detection and Mitigation with COst-benefit and Climate-policy MeasureS; CLIMOS; https://climos-project.eu/). Additional data were collected
from published literature (Online Resource 2). For a species be included, a minimum threshold of 25 observations (van Proosdij et al., 2016)
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must be reached after environmental filtering and using only locations that enable spatial cross-validation (both procedures are described in
section 2.3). Twelve sand fly species (n = 33 to 284 presence records) were modelled (Table 1).

The studied sand fly species, their sam;T:I:i;es, the spatial and the temporal ranges.
Species Name  Sample Size  Longitude Latitude Year
(decimal degree)  (decimal degree)

Ph. papatasi 284 -7.63-46.4 31.1-47.7 2005-2022
Ph. perniciosus 236 -9.28-15.3 36.2-50.8 2010-2023
S. minuta 189 -9.28-46.3 32.2-44 2009-2021
Ph. sergenti 134 -9.28-46.2 31.8-44.7 2005-2020
Ph. tobbi 128 20-35.7 31.8-43.9 2005-2022
Ph. mascittii 97 3.63-28.9 36.7-50.8 2010-2023
Ph. neglectus 77 13.7-44.6 35-45.8 2011-2023
Ph. perfiliewi 77 2.42-35.5 35-47.8 2009-2022
Ph. ariasi 75 -9.28-3.69 36.6-44 2011-2018
S. dentata 51 24.5-35.7 34.7-41.8 2009-2017
Ph. simici 39 19.2-44.5 35.4-44.5 2009-2017
Ph. alexandri 33 -2.02-44.7 31.8-43.6 2009-2017

2.2 Environmental variables

Variables related to climate, land use, lithology, biodiversity and human populations served as potential predictors for the occurrences of sand
flies (Online Resource 3). We pre-selected 146 out of a total of 196 climatic variables (at a spatial resolution of 30 arcseconds, means of 1981-
2010)(Brun et al., 2022) from Chelsa (https://chelsa-climate.org/) based on their potential ecological relationships with sand flies, numerical
nature, and completeness (i.e., few missing values). We used the most recent (i.e., 1981-2010) historical data available to match spatially with
sand fly presence records and background data (i.e., 2005-2023) for model training and assessment. Future climatic scenarios, which were
available for 80 climatic variables for three periods 2011-2040, 2041-2070 and 2071-2100, were obtained from the general circulation model
GFDL-ESM4. This model was found to project realistic climatic conditions for Europe(Palmer et al., 2022). Three Shared Socioeconomic
Pathways (SSPs), namely SSP1-2.6 (predicted CO, decline), SSP3-7.0 (predicted CO, increase) and SSP5-8.5 (predicted CO, rapid increase),

were used for prediction (IPCC, 2021).

We used 14 land-use variables (at spatial resolution of 0.25 degree and temporal resolution of 1 year)(Chini et al., 2021; Hurtt et al., 2020) from
Land-Use Harmonization? (https://luh.umd.edu/data.shtml). Data from 2005 to 2019 was used for model training and testing; future projections
for the years 2040, 2070 and 2100 were used for prediction. Here we chose to match land-use covariates with sand fly presence records and
background data in space and in time (i.e., year) instead of averaging across years (i.e., resembling climatic data) to preserve variations in
predictor variables and to test their relationships with sand fly occurrences. In addition, a global lithological map (at spatial resolution of 30
arcminutes)(Hartmann & Moosdorf, 2012) provided data on the type and resistance to weathering and erosion of the rock in an area (Ddirr et al.,
2005).

We tested the impact of 34 biodiversity indicators (at spatial resolution of 1 degree)(Baisero & Rondinini, 2023; Hill & Purvis, 2023; Martins et al.,
2018; Martins & Pereira, 2022) obtained from The Group on Earth Observations Biodiversity Observation Network (GEO BON,
https://geobon.org/). We also included human population density (at spatial resolution of 30 arcseconds and temporal resolution of 5 years
interval between 2000 and 2020) from NASA's Socioeconomic Data and Applications Center (SEDAC,
https://earthdata.nasa.gov/centers/sedac-daac)(Center for International Earth Science Information Network - CIESIN - Columbia University,
2018). The layers of future land use and lithology (kept constant from present to future) were rescaled to 30 arcseconds to match up the spatial
resolution of other variables for prediction.

2.3 Modelling

The modelling procedure consisted of three steps (Fig. 2). In the pre-processing stage, sand fly count data were converted to presence data. To
correct for biased sampling towards areas where and periods when adult sand flies are more likely to be found (e.g., 58.8% of observations were
made where mean annual air temperature (BIO1) was 18.8°C and annual precipitation (BIO12) was 511.7 mm), we applied environmental
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thinning(Varela et al., 2014) on sand fly presence records per species. For each unique environmental condition, considering all covariates, one
record was randomly sampled using the sample() function in R ‘base’(R Core Team, 2023). Afterwards, 100,000 background points (Renner et
al., 2015) were randomly sampled within the study area using the st_sample() function of the ‘sf’ package (Pebesma, 2018), and were randomly
assigned a year number between 2005-2023 (i.e., the temporal range of presence data). An equal number of background data points were
assigned to each year. Afterwards, the values of historical environmental variables were extracted at the locations and in the periods of sand fly
observations using the function extract() in the ‘terra’ package (R. Hijmans, 2023) and were standardized. The variables for future predictions
were also standardized using the means and the standard deviations of the historical dataset.

In the processing phase, models were fitted using maximum entropy (Maxent)(Phillips et al., 2006) in RStudio (R Core Team, 2023) and the
‘dismo’ package (R. J. Hijmans et al., 2022). We used all feature classes except threshold (Phillips et al., 2017). We first determined the value of
the regularization multiplier per species before model fitting (Online Resource 4). After feature class and regularization multipliers were
determined, we fitted single variable models for all variables (196 models per studied species), computed variable effect size using the lambda
file of Maxent (Online Resource 5), and spatially cross-validated the models (Online Resource 4). Spatial cross-validation was chosen to mitigate
influence from spatial autocorrelation (Bahn & McGill, 2013; R. J. Hijmans, 2012), which can be caused by, among others, the limited flight
capacity of sand flies (Maroli et al., 2013). Two model evaluation statistics were computed using the evaluate() function in the ‘dismo’ (R. J.
Hijmans et al., 2022)package: the area under the receiver operating characteristic curve (AUC) and True Statistic Skills (TSS) (Allouche et al.,
2006; Fielding & Bell, 1997).

We also fitted and cross-validated models using the spatial blocks for all possible two-variable combinations of the variables that were either
static or with future projections for the chosen horizons and SSPs (i.e., 95 variables). These variables included land-use, lithological and a part
of the climatic variables. Biodiversity indices had either no future scenarios or had projections in 2050 with different SSPs and could not be
used for predictions of the selected horizons (i.e., 2040, 2070 and 2100) and scenarios (i.e., SSP1-2.6, SSP3-7.0, SSP5-8.5). Human population
density did not have a future projection. To avoid multicollinearity, the two-variable combinations must have a variance inflation factor (VIF) < =
10 (Akinwande et al., 2015) as computed in the ‘usdm’ (Naimi et al., 2014). The chosen VIF threshold was higher than the generally accepted
VIF < = 5 for regression models (Akinwande et al., 2015), since Maxent can deal relatively well with correlated variables (Elith et al., 2011). We
limited the number of variables in a model to two to to avoid high computational expenses.

In the post-processing phase, the best explaining variables were taken as those with the highest effect sizes and with AUC > 0.7; the best
predictive models were taken as those with the highest AUC and TSS. The best predictive models were used to project suitable habitats under
current conditions and future (i.e., under SSP1-2.6, SSP3-7.0, SSP5-8.5) conditions for the three future time horizons (i.e., 2040, 2070, 2100).
These habitat suitability maps were converted to binary maps using threshold values that maximize the sum of sensitivity and specificity (Liu et
al., 2013). We then predicted habitat shifts by comparing current suitable habitats with future habitats. Areas where it is currently unsuitable for
sand flies to occur but will become suitable habitat in the future expect range expansion; areas where current suitable habitats will become
unsuitable for sand flies to inhabit expect range contraction.

3. Results

When the 196 covariates were considered in isolation, the variables with the largest effect sizes were mostly related to moisture (9 of 12
species), and to a lesser extent to temperature (3 of 12 species; Table 2). In particular, climate moisture indices had the largest effect sizes for
seven species. All but one of the nine species responded unimodally to these moisture related drivers; Ph. tobbi responded positively to climate
moisture index range. Temperature-related variables had the largest effect sizes for three species, all of which responded unimodally.

When considering the discrimination power of single variables, moisture-related covariates (i.e., climate moisture index, relative humidity, vapor
pressure deficit, potential evapotranspiration and precipitation) best predicted the suitable habitat for eight of the 12 species. In these cases,
AUC ranged from 0.85 to 0.96, and TSS ranged from 0.71 to 0.91. Temperature-related variables (i.e., mean and max air temperature) best
predicted the suitable habitat for two of the 12 species, with AUC ranging between 0.83 and 0.89 and TSS between 0.70 and 0.76. Net primary
productivity best predicted the suitable habitat of Ph. mascittii (AUC = 0.82; TSS = 0.66); a biodiversity index (i.e., species richness of non-forest
birds) best predicted the suitable habitat of Ph. tobbi (AUC = 0.93; TSS = 0.81).

The best two-variable predictive models (selected from 95 variables) contained either climatic, or land-use, or a combination of climatic and
land-use variables (Table 2). A combination of different climatic variables (i.e., moisture-related, temperature-related and net primary
productivity) can best predict the suitable habitat for seven of the 12 studied species (AUC ranged between 0.90 and 0.95, TSS between 0.81
and 0.92). Temperature-related variables alone can best predict the suitable habitat for Ph. alexandri (AUC = 0.87, TSS = 0.74); moisture-related
variables alone for Ph. tobbi (AUC = 0.94, TSS = 0.88). Climatic and land-use variables combined can best predict the suitable habitat for two
species (AUC ranged from 0.89 to 0.92, TSS from 0.76 to 0.83). Land-use variables alone can best predict the suitable habitat for Ph. ariasi
(AUC =0.93,TSS =0.87).
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Table 2

Single variable models with the largest effect sizes and the largest discrimination power, and two-variable models with the best predictive
performance, their predictive metrics and thresholds to convert suitability maps to binary maps.

Species
Name

Ph.
alexandri

Ph. ariasi

Ph.
mascittii

Ph

neglectus

Ph.
papatasi

Ph.
perfiliewi

Ph.
perniciosus

Ph.
sergenti

Ph. simici

Single Variable
with the Largest
Effect Size

Monthly climate
moisture index in
September

Monthly climate
moisture index in
June

Mean annual air
temperature

Mean climate
moisture index in
August

Mean potential
evapotranspiration
in April

Mean climate
moisture index in
June

Mean air
temperature in
December

Minimum monthly
vapor pressure
deficit

Mean climate
moisture index in
September

Effect
Size

54

30

20

31

14

34

17

34

40

Response
curve

unimodal

unimodal

unimodal

unimodal

unimodal

unimodal

unimodal

unimodal

unimodal

Single Variable
Model with the
Best Predictive
Performance

Mean monthly
climate moisture
index

Mean climate
moisture index in
July

Net primary
productivity

Mean air
temperature in
May

Mean near-
surface relative
humidity in
February

Mean vapor
pressure deficit in
March

Mean maximum
air temperature in
October

Mean potential
evapotranspiration
in March

Mean vapor
pressure deficit in
October
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AUC TSS
0.85 0.71
0.91 0.85
0.82 0.66
0.89 0.76
0.90 0.79
0.93 0.84
0.83 0.70
0.91 0.81
091 0.81

Parsimonious
Model with
the Best
Predictive
Performance

Snow cover
days

Mean
maximum air
temperature
of March

C3 annual
crops

C3 perennial
crops

Net primary
productivity

Snow cover
days

Mean daily
mean air
temperatures
of the
warmest
quarter

Annual
precipitation
amount

Accumulated
precipiation
amount on
growing
season days

Mean
maximum air
temperature
of May

Accumulated
precipiation
amount on
growing
season days

Mean air
temperature
of May

Number of
growing
degree days
>0°C

Urban land

Secondary
mean
biomass
carbon
density

Mean air
temperature
of August

Total
precipitation
of March

AUC TSS
0.87 0.74
0.93 0.87
0.90 0.81
091 0.82
0.91 0.81
0.95 0.88
0.89 0.76
0.92 0.83
0.94 0.88

Threshold

0.64

0.34

0.23

0.50

0.47

0.51

0.60

0.47

0.42



Species Single Variable Effect Response Single Variable AUC TSS Parsimonious AUC TSS Threshold
Name with the Largest Size curve Model with the Model with
Effect Size Best Predictive the Best
Performance Predictive
Performance

Mean
maximum air
temperature
of June

Ph. tobbi Annual range of 32 positive Species richness 0.93 0.81 Accumulated 094 0.88 0.24
monthly climate of non-forest birds precipiation
moisture index in 2015 amount on
growing
season days

Total
precipitation
of August

S. dentata Mean air 37 unimodal Mean potential 0.96 0.91 Net primary 0.95 092 0.56
temperature in evapotranspiration productivity
October in September
Total
precipitation
of September

S. minuta Mean climate 27 unimodal  Total precipitation  0.92 0.78 Total 094 0.84 0.20
moisture index in in July precipitation
March of October

Mean
maximum air
temperature
of February

The parsimonious predictive models projected larger suitable habitats than the observed distribution ranges for the studied species under
current environmental conditions (Fig. 3).

Sand flies’ suitable habitats are expected to expand in the future compared to now (Fig. 4). Across the 12 species, the three future horizons and
three scenarios, an average of 68.6% of the area in the study area will remain unsuitable and an average of 11.6% will stay suitable for sand flies
to occur. About 19% of the study area is currently unsuitable habitat for sand flies but will become suitable for one or more sand flies to inhabit
(i.e., range expansion), whereas the areas where suitable habitat will become unsuitable for sand flies (i.e., range contraction) are negligible.

Overlaying the binary suitability maps of the five confirmed vector species of Leishmania infantum, the major pathogen causing visceral
leishmaniasis in Europe, resulted in a map of L. infantum vector species richness (Fig. 5). Larger ranges are predicted to host more vector
species under future climatic and land-use conditions compared to now. Regions that now already have a high vector richness (including
southwest Iberia, the south and southwest coasts of France, coastal regions in Italy and in the Balkans, and west and central Turkey, Fig. 5A) are
expected to see L. infantum vector species hotspots expanding.

4. Discussion

Phlebotomine sand flies are vectors of leishmaniasis and several viral neuro-invasive diseases that are responsible for heavy disease burdens
and socio-economic impact (Lenk et al., 2018; Lozano et al., 2012; Maroli et al., 2013). The emergence and re-emergence of sand fly-borne
diseases in Europe (Maia, 2024) and the expectation of range expansion of sand flies in Europe necessitate a better understanding of the
ecology of these organisms. We explored 196 environmental variables using machine learning techniques and identified variables that are
ecologically the most relevant for each studied sand fly species. We also constructed parsimonious predictive models for all studied species
and generated potential distribution predictions under current and future environmental conditions.

Occurrences of the majority of the studied sand fly species (9 of 12) were best explained by moisture-related climatic variables, with the others
being explained by temperature-related variables. This result suggests that, although temperature greatly controls the development speed of
sand flies(Killick-Kendrick, 1999; Maroli et al., 2013), moisture most affects where they occur on large temporal-spatial scale (i.e., (multi-)annual,
reginal and beyond). Among the moisture-related variables, the most identified was climate moisture index (7 species), a climatic measure
combining precipitation and potential evapotranspiration (Brun et al., 2022) and informing about net water availability to organisms like sand
flies. In contrast to relative humidity or precipitation, which may influence sand fly activity in a more transient and local manner as shown in
earlier field studies e.g. (Cazan, Pastray, et al., 2019; Galvez et al., 2010; Kniha et al., 2021; MuNoz et al., 2018; Prudhomme et al., 2015;
Tsirigotakis et al., 2018b), climatic moisture index had the largest impact on sand fly presence for the studied scale. Biodiversity indices (i.e.,
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(weighted) relative changes in bird species richness) had large effect sizes for a few sand fly species (i.e., Ph. ariasi, Ph. mascittii, Ph.
perniciosus, S. minuta), underscoring an important role of wildlife being hosts for sand flies (Veiga et al., 2024). In addition, bird richness could
be a competent bioindicator for environmental conditions (Mekonen, 2017) for sand flies. However, biodiversity indices could not reasonably
predict sand fly occurrences (i.e., AUC < 0.7), possibly influenced by the coarse resolution of these variables (i.e., 1 degree).

The most effective environmental variables, i.e., moisture-related climatic variables, representing one dimension of the ecological niches of the
studied species, do not mirror the taxonomic relationships of sand flies but are more related to their spatial patterns. For example, Ph. alexandri
and Ph. simicibelong to different subgenera but both are most affected by the climate moisture index in September and both prefer where this
index is slightly lower than its mean value (Online Resource 6). These two sand fly species are caught in different sites (with Ph.alexandribeing
more widely distributed than Ph. simici), but their modelled suitable habitats largely overlap (Fig. 3). The much more restricted realized
distribution of Ph. simici could thus be driven by variables not included in the current study. In addition, Ph. ariasiand Ph. perniciosus are two
sister species under subgenus Larroussius. Both are found in Iberia, France, Italy and northwest Africa(European Centre for Disease Prevention
and Control, n.d.). These two species are most affected by two highly negatively correlated variables (i.e., climatic moisture index in June and
mean air temperature in December respectively, correlation coefficient = -0.86) with similar response curves (only that the niche of Ph.
perniciosus is slightly wider and more available in the landscape, Online Resource 6). The complimentary niches of Ph. ariasiand Ph.
perniciosus may explain their sympatric distributions.

Similar to the most effective variables in explaining sand fly occurrences, variables that could best distinguish presence sites from background
locations were mostly related to air moisture and water availability (8 of 12 species). These measurements of moisture (i.e., climate moisture
index, potential evapotranspiration, vapor pressure deficit, humidity, precipitation) resulted in high discrimination power, possibly because they
drive and thus well approximate ecosystem properties (Novick et al., 2024; Siepielski et al., 2017). We found that the variables that were the
most ecologically relevant for sand fly presence (i.e., variables with the largest effect sizes) are often not the same as the ones with the largest
discrimination power (i.e., variables with the highest AUC and TSS). Variables with large effect sizes may fit the data less well (e.g. with larger
error) and thus can less well discriminate sites where sand flies are present from background locations. In general, we show that species
distribution models can be used for different purposes such as exploration, inference and prediction (Tredennick et al., 2021). It is advisable to
select models depending on the research questions (Tredennick et al., 2021), which in our case related to selecting for effect size for ecological
explanation and selecting for predictive performance for prediction purpose.

Although the exact measures for the largest effects and for the highest discrimination power are different, we found that moisture is the most
important environmental factor for sand fly occurrences. The lack of future scenarios for many of the moisture-related variables (only
precipitation has future projections) hampers projection of potential habitat into the future. For prediction purposes, we had to select models
from variables with future projections and the outcomes are mainly a combination of climatic and land-use variables.

The projected suitable habitats under current environmental conditions are generally beyond the observed distributions of sand flies(European
Centre for Disease Prevention and Control, n.d.). This apparent paradox could result from the current realized distributions of sand flies being
largely formed via evolutionary history and paleoclimatic events(Cruaud et al., 2021; Esseghir et al., 2000). Occupation of the full potential range
may be impeded by (biotic) factors that are not a part of our model, including niche width, dispersal, habitat availability and stability, and
interspecific competition(Godsoe & Harmon, 2012; Pulliam, 2000). Long distance dispersal is rare in sand flies (Orshan et al., 2016b; Pérez-
Cutillas et al., 2020), and passive transportation is considered unlikely due to their fragility and sensitivity to desiccation (European Centre for
Disease Prevention and Control, 2020). Furthermore, previously reported “range expansion” must take into consideration increases in sampling
efforts in non-endemic regions (e.g.(Risuefio et al., 2024)). The observed non-overlapping distributions on large geospatial scale are not likely a
result of host preference, since many largely allopatric (and partly sympatric) species (e.g. Ph. ariasi, Ph. perniciosus, Ph. perfiliewiand Ph.
neglectus) are opportunistic feeders with a large host range (Bongiorno et al., 2003; Guy et al., 1984; Veiga et al., 2024; Velo et al., 2005).
Furthermore, anthropophilic behaviour (Chaskopoulou et al., 2016; Veiga et al., 2024) should facilitate sympatric distribution thanks to host
availability. Other types of interspecific competition are largely unknow for Phlebotomus spp. However, experiments on other Diptera spp. show
that larvae competition can affect adult emergence (e.g.(Schneider et al., 2000; Wasti et al., 1975; Werenkraut et al., 2008)) and can therefore
determine their distributions(Rodriguez-Castafieda et al., 2017). Future studies on competition among sand fly species can help advance our
knowledge on their ecology and distributions.

We projected larger suitable sand fly habitat compared to an earlier modelling exercise. Koch et al. (2017) used six predetermined climatic
variables and applied ensemble prediction using a maximum of 10 models (Koch et al., 2017). Their projections of current sand fly habitat were
essentially restricted to the observed ranges (Koch et al., 2017). An alternative approach to project species realized distributions (instead of
suitable habitat) could be using absence observations instead of pseudo-absence points for species distribution modelling (Brown & Griscom,
2022). Our current projections for Ph. alexandri, Ph. perniciosus, Ph. sergenti extent to higher latitudes compared to the projections of Koch et
al. (2017). This difference likely reflects the changing climate. To recap, we used more recent observations (2005-2023) and explanatory
variable data (1981-2010) compared to Koch et al. (2017) (observations from 1984; bioclimatic variables from 1960-1990 (Koch et al., 2017)).
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Our models predicted future habitat expansion to higher latitudes under the most scenarios for the majority of the studied species,
underscoring previous predictions of northwards shifting of suitable climate for sand flies in Europe (Koch et al., 2017). Poleward, eastward and
to a lesser extent southward range expansion is also predicted for the richness of vector species of L. infantum, the major pathogen causing
visceral leishmaniasis in Europe. Despite these predictions, the observed sand fly distributions lag behind the shifting suitable habitat. A recent
field survey suggests that the northern border of Phlebotomus spp. distribution in central-west Europe is in Luxemburg (Risuefio et al., 2024). In
addition, some longitudinal surveys provided evidence for local adaptation in the form of prolonged or multimodal active season (unpublished
data). It is therefore uncertain if, and if so in which time frame, sand flies will track their suitable habitats and migrate to novel regions. As
comparison, tick (/xodes ricinus) has been both predicted (Alkishe et al., 2017) and observed (Jaenson et al., 2012) expanding its geographic
distribution in Europe, probably partially due to passive transport on its hosts which is not the case of rapidly feeding sand flies.

Overall, our results show that moisture is the most important factor for sand fly occurrences. Areas larger than the current known distributions
are suitable for sand fly species in terms of climate and land use. Furthermore, these areas are expected to expand due to changes in climate
and land use. It is, however, uncertain to what extent and at what rate sand flies will track their suitable habitat northwards to spread to large
regions in Europe. Experiments on interspecific competition among sand flies are needed to advance our understanding on sand fly ecology and
distributions. In addition, surveillance in non-endemic regions (both presence and absence observations) will provide ground truth for realized
distribution ranges, especially for vector species with few observations (e.g. Ph. balcanicus, Ph. longicuspis). Unlike invasive mosquitos (e.g.
Aedes spp.) that are invading temperate regions and transmitting zoonoses (e.g., yellow fever, dengue, West Nile Virus)(Giunti et al., 2023), the
geographic distribution of Phlebotomine sand flies may not solely drive the spread of sand fly-borne diseases. Rather, the activity patterns of
sand flies and host-vector-pathogen interplay could be modified by climate and land-use changes (Rizzoli et al., 2019). Additionally, exposure
risks are expected to increase due to anthropogenic global changes (Cosma et al., 2024). Finally, vulnerability for sand fly-borne diseases is
likely heightened by demographic structure change and other immunosuppressive factors (Maia, 2024). All these factors contribute to the
spread of sand fly-borne diseases. Future research focused on these topics will help contribute to sand fly-borne diseases preparedness.
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Figure 1

Study area and observation locations.
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Modelling process (adapted from (Wang et al., 2022))
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Figure 3

Sand fly habitat suitability (A) and binary suitable habitat maps (B) under current environmental conditions. Colours show the probability of
occurrence. Dots are presence observations.
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Percentage of grid cells in the study area that is predicted with range changes across species, horizons (i.e., 2040, 2070, 2100) and scenarios
(i.e., SSP1-2.6, SSP3-7.0, SSP5-8.5).
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Figure 5

Suitable habitats, now (A) and in the future under SSP3-7.0 (2040 (B), 2070 (C), 2100 (D)), associated with vector species richness for those
sand flies that can transmit L. infantum (i.e., Ph. ariasi, Ph. neglectus, Ph. perniciosus, Ph. perfiliewi, Ph. tobbi (Online Resource 1)).
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