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s u m m a r y

Background: Severe pulmonary hemorrhagic syndrome (SPHS) remains a fatal complication of leptospirosis 
with poorly understood mechanisms and an urgent need for effective biomarkers.
Methods: A nested case-control analysis was conducted using blood specimens from two previous Thai 
leptospirosis cohorts. Candidate microRNAs were initially discovered through a global profiling of 798 
serum microRNAs in five SPHS and seven non-SPHS patients, and then validated using real-time polymerase 
chain reactions in 168 patients. Pathways enriched from microRNA targets were compared to those from an 
integrated transcriptomic-proteomic analysis. Proteins pertaining to the key resulting pathway were 
measured to validate significance and reveal correlation with microRNA biomarkers.
Results: Serum microRNA profiling revealed a total of 81 significantly expressed microRNAs, of which seven 
were selected for further validation in the whole cohort of 168 leptospirosis patients, including 28 in SPHS 
and 140 nonSPHS groups. Among the selected microRNAs, miR-5010–3p and miR-147b-3p had significantly 
higher expression in SPHS group compared to nonSPHS group, with consistently higher expression after 
adjusting for age, sex, days of illness, comorbidity, smoking status or recruitment site. The two had area 
under the curve (AUC) values of 0.76 (95% CI: 0.67–0.85) and 0.70 (95% CI: 0.56–0.81) for discriminating 
SPHS, respectively. These microRNAs also exhibited consistent AUC values in patients tested before chest 
radiograph shadows manifested. Combination of miR-5010–3p with miR-548ai and miR-224–5p, as selected 
by Bayesian Model Averaging algorithm, substantially boosts the AUC value to 0.86 (95% CI: 0.77−0.94). The 
miRNA biomarkers also enhanced the predictive values of a previously validated clinical model, increasing 
AUC value from 0.87 to 0.92 with a significant reclassification net index. Multi-omics pathway analysis 
incorporating microRNA targets and transcriptomic-proteomic data suggested TNF signaling as among the 
key pathways. In validation, seven out of ten pathway proteins were significantly different between groups, 
with principal components correlated with severity and miR-5010–3p.
Conclusions: MiR-5010-3p and miR-147b-3p are novel biomarkers with good predictability and potential 
relevance with TNF signaling pathway, an important host response mechanism in leptospirosis SPHS.
© 2025 The Authors. Published by Elsevier Ltd on behalf of The British Infection Association. This is an open 
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Introduction 

Leptospirosis, a zoonotic disease endemic to many tropical re
gions, is among the most widespread zoonoses worldwide. It affects 
over one million patients annually and contributes to approximately 
58,900 deaths and 2.90 million disability-adjusted life years world
wide.1,2 Patients infected with Leptospira spp. may present with a 
wide spectrum of clinical symptoms, ranging from subclinical in
fection to mild disease to severe complications. Among these, severe 
pulmonary hemorrhagic syndrome (SPHS), characterized by alveolar 
hemorrhage, acute respiratory distress syndrome, and multi-organ 
failure, has been reported as the complication with the highest risk 
of death associated with leptospirosis.3–5 Despite intensive treat
ment, the mortality rate linked to this syndrome can be as high 
as 50%.6 

Early identification of SPHS is crucial for timely intervention and 
improved patient outcomes. However, the diverse clinical features of 
leptospirosis make it challenging to diagnose and predict disease 
severity at the onset of illness based on clinical assessment alone. 
Pulmonary hemorrhage could be present even in patients without 
any respiratory symptoms.7 Chest radiography findings were found 
to be insensitive to alveolar hemorrhage and could not discriminate 
patients with SPHS at hospital admission.8,9 Existing clinical models 
to detect pulmonary complications required many covariates, hin
dering their translation to clinical practice.9,10 

The search for potential biomarkers that can serve as early 
warnings for disease severity and SPHS has been the topic of active 
research. A canine model study found association between the ele
vation of endothelial activation markers with SPHS.11 In human, 
platelet-activating factor acetylhydrolase was elevated in patients 
infected by L. interrogans serovar Icterohaemorrhagiae and was 
suggested as marker of the syndrome.12 Several cytokines, such as 
IL-5, IL-6, IL-8, IL-10, and MIF, were found to be significantly elevated 
in leptospirosis patients with SPHS.13,14 Nevertheless, there remains 
an urgent need for validated biomarkers for human leptospiral SPHS. 

MicroRNAs (miRNAs), a type of small non-coding RNA molecules, 
play essential roles in regulating various biological processes. 
Extracellular and circulating miRNAs, detectable in various types of 
body fluid, are of great interest as potential biomarkers for various 
diseases.15 Besides their high accessibility and stability, these mo
lecules are superior to whole blood miRNAs since their expression 
pattern is less prone to blood cell interference.16 In tropical in
fectious diseases such as dengue and leptospirosis, previous studies 
have demonstrated the ability of miRNAs to predict severe out
comes.17,18 Leveraging the biorepository from two large and well- 
characterized multi-center cohorts of leptospirosis patients in 
Thailand, we conducted this study to explore the potential of 
miRNAs as novel biomarkers for SPHS and unravel their biological 
relevance through a multi-omics approach. 

Methods 

Study design and participants 

This was a nested case-control analysis of a previous multi-center 
cohort study conducted in 15 hospitals in Sisaket province, northern 
Thailand from December 2015 to November 2018 and an ongoing cohort 
starting from 2019 in 8 hospitals in Sisaket and Nakhon Si Thammarat 
province (southern Thailand). All participants had given their consent 
regarding the use of remnant samples for further studies. The current 
study has received Institutional Review Board approval (IRB No.0576/66), 
Faculty of Medicine, Chulalongkorn University. A detailed description of 
the first cohort has been published elsewhere.19 

All the included patients had signs and symptoms suggestive of 
leptospirosis, including acute febrile illness, headache, and myalgia 
with history of exposure to animal water reservoirs or flooded 

environments either at home or at work, and had confirmed lep
tospirosis by one or more of the following methods: (1) microscopic 
agglutination test (MAT) with positive results defined as a single 
titer at least 400 or a four-fold increase between acute and con
valescent phases, (2) positive quantitative polymerase chain reaction 
(qPCR) assay for pathogenic Leptospira spp. in blood, or (3) positive 
blood culture. 

All patients’ specimens were collected immediately after written 
consents were obtained, usually within 24 h of admission. At each 
site, the specimens were processed according to a common protocol 
and shipped to the Center for Excellence in Critical Care Nephrology, 
King Chulalongkorn Memorial Hospital for storage at −800C until 
analysis (S-Fig. 1, Supplementary materials). 

Leptospirosis severe pulmonary hemorrhagic syndrome (SPHS) 
was defined as the presence of severe acute respiratory failure with 
diffuse alveolar infiltrates on chest radiograph, or with hemoptysis 
or fresh blood in endotracheal suction, in a patient with a confirmed 
diagnosis of acute leptospirosis.20,21 Controls (non-SPHS) were pa
tients who did not develop any signs of SPHS throughout the hos
pitalization course. The research team prospectively followed and 
evaluated the patients every day to detect SPHS and assess out
comes. All patients were managed in accordance with the current 
guidelines for leptospirosis from the Department of Disease Control, 
Ministry of Public Health of Thailand. 

Sample size was calculated for the main objective, which was to 
validate miRNA biomarkers discriminatory performance. A total of 
168 patients, including 28 SPHS and 140 randomly-selected non- 
SPHS patients, were analyzed. Justification for the sample size in 
Nanostring nCounter® and RT-qPCR experiment was detailed in the  
Supplementary materials (Section 2, S-Table 1 and S-Fig. 2). 

Procedures 

This study comprised three parts corresponding to three different 
objectives. The first part was concentrated on the discovery and 
validation of several miRNAs as potential novel biomarkers of SPHS. 
In the second part, we conducted an integrated transcriptomic- 
proteomic and miRNA targets pathway enrichment analysis to reveal 
the significant molecular pathways relevant to leptospirosis SPHS. In 
the third part, we validated 10 member proteins of the resulting 
pathway and conducted miRNA-protein correlation analysis to study 
their association (Supplementary material, Section 4, S-Fig. 5). 

MicroRNA 

Global microRNA expression profiling 
Initially, serum samples were thawed on ice and underwent cell- 

free total RNA extraction using the miRNeasy Serum/Plasma Kit 
(Qiagen in Gaithersburg, MD, USA) according to the manufacturer’s 
protocol. Briefly, 5 volumes of QIAzol lysis reagent were added to 
200 μl of serum, mixed and incubated at room temperature in 5 min. 
Next, 200 μl of chloroform was added and shaken vigorously for 15 s 
then incubated for 3 min. After centrifugation for 15 min at 12,000 g 
at 4 °C, the upper aqueous phase was transferred to a new collection 
tube and 1.5 volumes of 100% ethanol were added. The resulting 
sample was repeatedly transferred into an RNeasy MinElute spin 
column and centrifuged at ≥8000 g for 15 s. After three washes with 
buffers and 80% ethanol, the column was centrifuged at full speed for 
5 min. Finally, the column was eluted with 14 μl Rnase-free water. 

A subset of 12 serum samples (7 non-SPHS, 5 SPHS) was ran
domly selected for analysis with Nanostring nCounter® Human v3 
miRNA Expression Assays (NanoString Technologies, Seattle, USA), 
which profiles the expression of 798 miRNAs simultaneously. Briefly, 
3 μl of final RNA solutions from each sample were used and the 
experiment followed manufacturer’s protocol. Then, tags ligation 
was followed by hybridization with the Reporter CodeSet and 

P.N.T. Tran, U. Limothai, J. Dinhuzen et al. Journal of Infection 90 (2025) 106400 

2 



Capture ProbeSet. The prepared samples were processed on the 
NanoString Prep Station, loaded onto the nCounter cartridge, and 
analyzed using the nCounter Digital Analyzer, which captured data 
and images across 280 fields of view. Raw counts were processed 
with nSolverTM software (version 4.0), adjusted by subtracting the 
geometric mean of negative controls, and normalized using the 
geometric mean of positive controls and the top 100 most highly 
expressed miRNAs, which were defined by the averaged counts 
across all samples. 

MicroRNA validation by Realtime quantitative Polymerase Chain 
Reaction (RT-qPCR) 

The quantification of miRNA candidates was carried out through 
RT-qPCR following a previously established protocol.22 The process 
includes three main steps: polyuridylation, reverse transcription 
reaction, and RT-qPCR. Total RNA (7 μl) was initially polyuridylated 
using UTP and poly(U) polymerase. The tailing reaction mixture was 
incubated at 370 C for 10 min. cDNA molecules were then reverse 
transcribed using universal poly(A) stem-loop RT primers by Re
vertAid First Strand cDNA Synthesis Kit (Cat No. 1622, Thermo Sci
entific, USA). 

For RT-qPCR, a miRNA-specific forward primer and a universal 
reverse primer were used with the StepOne Plus Real-time PCR 
System (Applied Biosystems, USA). The miRNA-specific forward 
primer’s 3′-end was designed to hybridize to the cDNA molecule of 
the targeted miRNA, while a tail was introduced at the 5′-end to 
adjust the melting temperature. The SYBR Green system (Luna 
Universal qPCR Master Mix, Cat No. M3003, New England Biolabs, 
Inc., USA) was used to evaluate miRNA levels with 1 μl of template 
cDNA for each reaction. Primer sequences are provided in S-Table 3 
(Supplemental materials). RT-qPCR reactions were conducted in 
duplicates with 40 cycles. The miRNA relative expression level was 
calculated using the 2-ΔΔCT method. Each assay was examined for 
distinct melting curves, and those with more than one melting 
temperature or within five cycle thresholds of the negative control 
(Ct exceeding 35) were omitted from the analysis. 23 

Accounting for hemolysis and selection of an appropriate endogenous 
reference for RT-qPCR quantitative analysis 

To account for hemolysis, the ratio between miR-451a and miR- 
23a-3p was measured. 24 Since 52% of our samples had a hemolysis 
ratio of above 7, which suggests possible hemolysis, we searched for 
an appropriate endogenous reference that met two criteria: (1) 
highly and stably expressed across SPHS and nonSPHS samples, and 
(2) not prone to hemolysis. Our full approach is detailed at S-Fig. 3 
(Supplementary material). Briefly, we calculated stability value using 
NormFinder on our nCounter® data, and intersected the miRNAs 
with lowest stability values with those least affected by hemolysis, 
referenced from the work of MacLellan et al. 23 The process revealed 
miR-23a-3p as an optimal option. Interestingly, this miRNA has been 
known for its stable expression in serum and plasma samples and 
were recommended as endogenous control by several studies of 
circulating miRNA. 25–28 When measured in our whole cohort, miR- 
23a-3p displayed a stable expression across SPHS and hemolysis 
groups (S-Table 2). 

For our main analysis, relative expressions were calculated with 
miR-23a-3p as normalizer. We also conducted a sensitivity analysis 
excluding all samples with hemolysis ratio above 7 and compared 
the performance of our best biomarkers when normalized by miR- 
23a-3p and by miR-16-5p-a widely accepted normalizer given he
molysis is unlikely.29 

Transcriptomics 

We obtained a gene expression dataset from GEO Omnibus (ac
cession ID: GSE72946) to enrich the pathway analysis. This study 

measured the acute phase global gene expression in whole blood 
samples of Brazilian leptospirosis patients, including 13 non-fatal 
and 3 fatal patients.30 Of note, the three fatal cases differed with 
non-fatal cases by severe pulmonary involvement, including he
moptysis, acute respiratory failure and mechanical ventilation re
quirement, which were all suggestive of SPHS. A comparison of the 
patients’ clinical features was demonstrated in S-Table 4 
(Supplementary materials). For convenience, we labeled the two 
groups as non-SPHS and SPHS in this study. 

Proteomics 

Global protein expression data were obtained through a se
quence of two experiments. Matrix-Assisted Laser Desorption/ 
Ionization Time-of-Flight (MALDI-TOF) were performed on plasma 
samples to survey the peptide expression and select optimal samples 
for Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). 
The LC-MS/MS phase involved plasma samples from 57 non-SPHS 
and 19 SPHS patients. Peptides in each plasma sample were pooled 
and prepared for injection into an Ultimate3000 Nano/Capillary LC 
System (Thermo Scientific, UK) coupled to a ZenoTOF 7600 mass 
spectrometer (SCIEX, Framingham, MA, USA). The non-SPHS group 
was analyzed in six replicates and the SPHS group in three replicates 
(S-Fig. 6). Further details for MALDI-TOF and LC-MS/MS experiments, 
including data acquisition and data preprocessing, are provided in 
the Supplementary materials, Section 4. 

Olink® proteomics for pathway proteins validation 

The expression of 10 relevant proteins were measured using 
proximity extension assay technology (Olink® Target 96 
Inflammation panel version v.3025). Briefly, the plasma samples 
from the same set of patients in LC-MS/MS experiments were sent to 
a core lab in a randomized batch. Data generation and quality control 
were performed with Olink® NPX Signature normalization. The ex
pression values were in Normalized Protein Expression (NPX) unit. 

Bioinformatic analysis 

The expression data obtained from miRNA profiling, gene ex
pression and LC-MS/MS proteomics followed a common analytic 
workflow. All expression values were log2 transformed and quantile 
normalized. Missing protein intensities were imputed using random 
forest method. 31 Differential analyses were conducted using em
pirical Bayes method in limma R package.32 A hierarchical model was 
fitted with the non-SPHS group as reference to calculate moderated 
t-statistics, log2 fold-change (log2FC) and p-values. Multiple com
parison were adjusted using false discovery rate (FDR) q-value 
method from qvalue R package, with a q-value < 0.05 considered 
statistically significant.33 Principal component analysis (PCA), com
ponent loadings, and Eigencor plot were conducted using PCAtools R 
package.34 

The validated and reviewed targets of miRNAs were obtained 
from MirTarBase update 2022 and TarBase-v9.0 (S-Table 5).35,36 For 
pathway enrichment analysis, lists of differentially regulated genes 
and proteins were separately uploaded to STRING database v12.0 for 
protein-protein interaction (PPI) analysis, with a confidence cutoff at 
0.7. The largest module from PPI analysis was selected for pathway 
enrichment in Cytoscape, using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. 37 An integrative gene-protein analysis 
was further conducted using ActivePathways R package, following its 
published protocol.38 Enriched pathways were visualized using Cy
toscape version 3.9.1 and the EnrichmentMap plugin, with relevant 
KEGG pathways created by KEGG mapping tools. 39 

The scheme for the multi-omics pathway enrichment analysis 
was described in the Supplemental materials (Section 4, S-Fig. 5). 
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Briefly, the analysis was performed initially on single-omics data 
then on the integrated at gene-ID level data. The resulting pathways 
were intersected with miRNA target-enriched pathways. 

Statistical analysis 

Continuous variables were described by mean and standard de
viation (SD) for normally distributed data, or median and inter
quartile range (Q1,Q3) for skewed data. Two-sample Welch’s t-test 
was used to compare the log10 transformed relative expression of 
the miRNA between two groups. Predictive values, including area 
under the curve (AUC) and its 95% confidence interval (CI), were 
obtained through Receiver Operating Characteristic (ROC) curve 
analysis and De Long’s method using the pROC R package on the total 
sample size of 168 patients.40 

Multivariable logistic regression was employed to assess the ro
bustness of the miRNAs when adjusting for potential confounders, 
including age, sex, comorbidity, smoking status, recruitment site and 
cohort. While age and sex have been widely recognized as con
founders of circulating miRNA expression, existing evidence also 
suggested the effect of comorbidity, like diabetes and hypertension, 
on serum miRNAs.41,42 The effect of smoking status on circulating 
miRNA expression is controversial, however, considering its poten
tial effects on lung status, we included it in the analysis.23,43 We also 
adjusted for the effect of recruitment sites since difference in local 
practice might have an effect on the quantification result of the 
miRNAs. 

Bayesian model averaging algorithm from BMA R package was 
used to suggest the most parsimonious combination of miRNA- 
miRNA or miRNA-protein for predictive logistic regression model.44 

Correlations between miRNA and protein expressions were per
formed using a non-parametric test (Spearman’s test). Of note, only 
10 out of 96 proteins in Olink® panel were reported since we spe
cifically focus on the most important pathway suggested by multi- 
omics analysis. This maintained a hypothesis-driven approach and 
avoided unnecessary multiple testing. Multivariable linear regres
sion and likelihood ratio test were used to compare model with and 
without interaction term. 

To facilitate the interpretation of miRNA biomarkers in practice, three 
different cut-offs for different usage scenarios were introduced. They 
included the overall optimal cut-off following Youden index method 
(maximizing the sum of sensitivity and specificity), the sensitivity- 
prioritized cut-off for use as a screening tool (controlling sensitivity at 
99% while maximizing specificity) and the specificity-prioritized for use 
as a rule-in test to support treatment decision (controlling specificity at 
99% while maximizing sensitivity). 

To test whether the inclusion of microRNA biomarkers improves 
discrimination and reclassification for SPHS, a previously developed 
and validated clinical model for SPHS prediction including shock at 
admission, respiratory rate, Glasgow score, serum potassium and 
serum creatinine was used as the baseline model, and compared to 
model with microRNA biomarkers.9 Improvement in discriminatory 
performance was tested using two ROC curves test function in pROC 
R package (De Long’s method). Reclassification tabulation was per
formed with PredictABEL R package to calculate net reclassification 
index (NRI) and Integrated Discrimination Index (IDI). Cut-off for 
reclassification analysis was selected at two intervals: 0–50% and 
50–100%, according to the original publication of the clinical model.9 

All computational analyses were conducted in Rstudio version 4.3.1. 

Role of the funding source 

The funding source had no active role in study design, data col
lection, data analysis and interpretation, manuscript preparation and 
publication. 

Results 

Clinical characteristics 

From the biorepository and available clinical data, we identified 
28 leptospirosis patients with clinical features of SPHS and randomly 
selected 140 non-SPHS patients, following the flowchart in Fig. 1. 
Overall, patients in both groups had comparable ages (median of 47 
and 51.5 years for non-SPHS and SPHS, respectively) and a pre
dominance of male sex. All patients had a history of fever and were 
admitted during the febrile phase, with recruitment occurring at a 
similar stage of illness, a median of three days since fever onset 
(Table 1). 

On recruitment day, SPHS patients exhibited more severe clinical 
features compared to non-SPHS patients. The SPHS group had sig
nificantly lower systolic blood pressure (mean of 90.6 ± 16.5 mmHg) 
compared to the non-SPHS group (115 ± 23.1 mmHg). Jaundice was 
observed in 21.4% of SPHS patients versus 8.6% in the non-SPHS 
group. The SPHS group also showed lower hematocrit levels, platelet 
counts, higher total bilirubin levels, and lower albumin levels. The 
Sequential Organ Failure Assessment (SOFA) score and the number 
of organs involved were substantially higher in the SPHS group. 
While both groups had similar rates of positive MAT for leptos
pirosis, leptospiremia was higher in the SPHS group (96.4%) com
pared to the non-SPHS group (83.6%). During hospitalization, eight 
SPHS patients and three non-SPHS patients died (Table 1). 

Discovery and validation of miRNA biomarkers 

Global miRNA profiling revealed a total of 81 differentially ex
pressed miRNAs, including 13 up-regulated and 68 down-regulated 
miRNAs (Fig. 2A). These miRNAs exhibited clear clustering in the 
heatmap visualization (Fig. 2B). We randomly selected seven 
miRNAs (hsa-miR-5010–3p, miR-147b-3p, hsa-miR-362-3p, hsa- 
miR-502-5p, hsa-miR-3131, hsa-miR-548ai and hsa-miR-224-5p) 
among the most differentially expressed molecules for validation. 

In validation phase, three miRNAs exhibited significantly dif
ferent expressions that were consistent with nCounter results, in
cluding the upregulation of miR-5010–3p, miR-147b-3p and the 
downregulation of miR-548ai. MiR-3131 and miR-224–5p were sig
nificantly expressed with contrast direction compared to nCounter 
experiment (Fig. 2C). 

For predictive performance, miR-5010–3p and miR-147b-3p had the 
most optimal AUC values, at 0.76 (95% CI: 0.67–0.85) and 0.70 (95% CI: 
0.58–0.81) (Fig. 3A). Other miRNAs, such as miR-548ai, miR-3131, and 
miR-224–5p, also demonstrated significant discriminatory ability for 
SPHS patients with lower AUC values (Fig. 3A). Among these, miR- 
5010–3p and miR-147b-3p displayed noticeable positive correlations 
with clinical markers of acute blood loss (hematocrit level), bleeding risk 
(platelet counts), and clinical severity (SOFA score and the number of 
organ involvements) (Fig. 3B). We thus focused on these two for further 
subgroup analysis. More importantly, the performance of miR-5010–3p 
and miR-147b-3p remained significant in patients tested before chest X- 
ray shadows appeared, at an AUC of 0.74 (95% CI: 0.63–0.84) and 0.70 
(95% CI: 0.59–0.81), respectively. In patients recruited on day 2 of fever 
or earlier, both miRNAs showed increased AUC values, at 0.82, (95% CI: 
0.66–0.94) and 0.84 (95% CI: 0.71−0.96), respectively (Fig. 3C). These 
results suggested early changes of the miRNAs in the disease course and 
thus suitable for use as clinical biomarker. These predictive estimates 
remained robust when adjusted for potential confounders such as age, 
sex, diabetes, hypertension, smoking status, recruitment sites or cohorts 
(S-Table 6). 

Sensitivity analysis on samples with hemolysis ratio < 7 revealed 
AUC values of miR-5010–3p and miR-147b-3p that were comparable 
to those from the whole cohort, at 0.76 (95% CI: 0.63−0.89) and 0.66 
(95% CI: 0.50−0.79) respectively (S-Fig. 4). Notably, the AUC values 
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were also similar when compared between miR-23a-3p and miR- 
16–5p normalizers (S-Fig. 4). Also, the relative expressions of the 
two miRNAs when normalized to miR-23a-3p showed strong posi
tive correlation with those normalized to miR-16–5p (S-Fig. 4). These 
analyses indicate that the significant performance of these two 
miRNA biomarkers was not biased by hemolysis. 

At their optimal cut-off points determined by Youden method, 
miR-5010–3p demonstrated a sensitivity of 0.77 (95% CI: 0.70–0.84) 
and a sensitivity of 0.68 (95% CI: 0.50–0.86), whereas the corre
sponding indices for miR-147b-3p are 0.61 (95% CI: 0.42–0.79) and 

0.74 (95% CI: 0.66–0.80), respectively. When used as screening tool 
at lower cut-offs, their sensitivity can be as high as 100%, with a 
trade-off for lower sensitivity, at 0.26 (95% CI: 0.19–0.34) for miR- 
5010–3p and at 0.20 (95% CI: 0.13–0.27) for miR-147b-3p. 
Conversely, when used as a rule-in test, the two miRNAs specificity 
can be as high as 99% with a decreasing sensitivity (Table 2). 

The potential of combining microRNA to improve performance was 
examined. BMA algorithm suggested some different sets of miRNAs, 
including two-miRNA, three-miRNA and four-miRNA models (Figure D). 
The two-miRNA model incorporating miR-5010–3p and miR-548ai 

Fig. 1. The study flowchart. *One non-SPHS patient was initially included in the discovery set. However, due to specimen running out, the patient was replaced by another non- 
SPHS patient for the validation set. SPHS: severe pulmonary hemorrhagic syndrome. 
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achieved an AUC value of 0.85 (95% CI: 0.76–0.93), while adding miR- 
224–5p and miR-3131 further extend the AUC values to as high as 0.89 
(95% CI: 0.80–0.96). Interestingly, these combinations also improve 
sensitivity and specificity at three different usage scenarios as compared 
to single miRNA (Table 2). 

The benefits of integrating novel miRNA biomarkers to improve 
clinical model predictions were illustrated. A baseline clinical model 
involving five baseline parameters (respiratory rate, Glasgow score, 
serum creatinine, serum potassium and shock at admission) had an AUC 
of 0.87 (95% CI: 0.8–0.94). When adding miR-5010–3p or miR-147b-3p, 
the AUC values significantly increased to 0.92 (95% CI: 0.87–0.97), sug
gesting an improved discriminatory performance. Furthermore, the up
dated model leads to a significant reclassification of leptospirosis with 
and without SPHS. The net reclassification index (NRI) is 0.9 
(0.545–1.255), p-value < 0.0001 and integrated discrimination index (IDI) 
is 0.083 (0.037–0.13), p-value < 0.0001 for miR-5010–3p (Fig. 3G). These 
results strongly suggest that novel miRNA biomarkers are useful for 
extending and updating existing predictive models. 

Multi-omics pathway enrichment analysis 

To understand the role of the miRNA biomarkers, we performed 
pathway analysis leveraging both gene expression and protein 

expression data, the two omics layers that are most relevant to 
miRNA mechanism of action. Clinically, patients in both types of 
omics data were all in febrile phase, although transcriptomics pa
tients tended to be younger overall (S-Table 4). 

Gene expression analysis unveiled 629 up-regulated and 698 
down-regulated genes (Fig. 4A). Heatmap visualization highlighted 
distinct clusters among the top DE genes (Fig. 4B). Proteomic ana
lysis revealed 496 up-regulated and 679 down-regulated protein 
groups (Fig. 4C), with similar clustering on heatmap plot (Fig. 4D). 
Many gene-protein pairs associated with the host immune response 
exhibited similar directional changes, such as ACOD1, BCL2A1, IL1R1, 
TLR4, and HIVEP3. However, others showed an opposite pattern, 
including DEFA4, IL18R1, TLR8, and certain immunoglobulins 
(Fig. 4E). 

PPI analysis revealed a large, connected module per each gene/ 
protein list (S-Fig. 7), with CTNNB1, IL10, IL6, CD74, FN1 appearing as 
high degree nodes. Single-omics pathway enrichment analysis re
vealed numerous significant pathways related to signal transduction, 
the immune system, and infectious diseases. Up-regulated genes and 
proteins were associated with a greater number of overlapping 
pathways, particularly those involved in inflammatory responses 
such as NF-kappa B, PI3K-Akt, and TNF signaling pathways. In con
trast, downregulated genes and proteins were enriched in fewer 

Table 1 
Baseline characteristics of the patients included in this study.          

Discovery set (N=12) Validation set (N=168) 

Non-SPHS (n = 7) SPHS (n = 5) Overall (n = 12) Non-SPHS (n = 140) SPHS (n = 28) Overall (n = 168)  

Age (years), Median [Q1,Q3] 54.0 [44.5,58.5] 30.0 [28.0,66.0] 51.5 [36.8,61.0] 47.0 [37.0,61.0] 51.5 [29.5,62.8] 48.0 [35.8,61.0] 
Male sex, n(%) 6 (85.7) 5 (100) 11 (91.7) 116 (82.9) 25 (89.3) 141 (83.9) 
BMI (Kg/m2, Mean (SD) 24.6 (5.31) 24.2 (4.03) 24.5 (4.73) 22.5 (3.93) 22.3 (3.49) 22.5 (3.87) 
Diabetes, n(%) 1 (14.3) 0 (0) 1 (8.3) 4 (2.9) 0 (0) 4 (2.4) 
Hypertension, n(%) 1 (14.3) 0 (0) 1 (8.3) 11 (7.9) 2 (7.1) 13 (7.7) 
Alcoholism, n(%) 7 (100) 5 (100) 12 (100) 5 (3.6) 2 (7.1) 7 (4.2) 
Smoking, n(%) 3 (42.9) 2 (40.0) 5 (41.7) 71 (50.7) 13 (46.4) 84 (50.0) 
Days of illness (days) Median [Q1,Q3] 3 [1,3] 3 [0,3] 3 [1,3] 3 [1.75,4] 3 [2.75,4] 3 [2,4] 
Clinical manifestation at specimen collection 
Temperature (0C) Mean (SD) 38.7 (1.38) 37.6 (1.66) 38.2 (1.54) 38.4 (1.21) 37.8 (0.987) 38.3 (1.19) 
Systolic blood pressure (mmHg)       
Mean (SD) 122 (15.5) 86.6 (22.5) 107 (25.3) 115 (23.1) 90.6 (16.5) 111 (23.9) 
Diastolic blood pressure (mmHg)       
Mean (SD) 68.9 (13.6) 50.6 (17.8) 61.3 (17.5) 66.4 (11.5) 57.0 (15.9) 64.8 (12.8) 
Hemoptysis, n(%) 0 (0) 2 (40.0) 2 (16.7) 0 (0) 11 (38.3) 11 (6.5) 
Jaundice, n(%) 0 (0) 1 (20.0) 1 (8.3) 12 (8.6) 6 (21.4) 18 (10.7) 
Hemoglobin (g/dL) Median [Q1,Q3] 12.7 [10.8,12.9] 8.60 [8.40,12.5] 11.7 [8.55,12.7] 12.2 [11.1,13.3] 11.2 [9.13,12.5] 12.1 [10.8,13.2] 
Hematocrit (%) Median [Q1,Q3] 38.0 [34.0,39.3] 26.3 [24.9,38.0] 36.0 [26.1,39.2] 38.0 [34.0,40.8] 32.6 [26.3,36.1] 37.0 [33.2,40.0] 
Leukocytes (1000/uL) Median [Q1,Q3] 13.2 [10.8,15.3] 8.7 [8.6,12.2] 12.3 [8.7,15.1 10 [7.5,12.6] 9.9 [6.4,12.9] 10 [7.1,12.6] 
% Neutrophils Median [Q1,Q3] 80.0 [75.0,85.5] 84.0 [82.0,91.0] 82.5 [79.3,88.7] 83.0 [73.0,87.9] 86.0 [82.5,90.9] 84.0 [74.9,88.0] 
% Lymphocytes Median [Q1,Q3] 11.0 [7.00,18.4] 7.10 [6.00,9.00] 9.50 [5.50,12.0] 9.95 [6.80,17.0] 7.05 [4.00,9.25] 9.00 [6.00,15.0] 
Platelets (1000/uL) Median [Q1,Q3] 188 [117,244] 54 [19,69] 85 [50.8,188] 139 [82.3,199] 37.5 [22.8,60] 109 [53.5,190] 
Blood urea nitrogen (mg/dL) Median [Q1,Q3] 16.5 [13.9,44.0] 26.0 [24.0,36.3] 24.0 [14.6,44.7] 16.9 [13.0,26.0] 36.3 [25.0,52.4] 19.7 [13.9,31.3] 
Serum creatinin (mg/dL) Median [Q1, Q3] 1.05 [0.915,3.55] 2.00 [1.22,3.04] 1.61 [1.03,3.33] 1.20 [0.930,1.60] 2.23 [1.63,4.28] 1.30 [0.960,1.96] 
Serum total bilirubin (mg/dL) Median [Q1,Q3] 0.800 [0.700,1.19] 2.40 [1.60,3.01] 1.19 [0.700,2.55] 1.10 [0.700,2.10] 3.11 [1.28,7.68] 1.20 [0.700,2.40] 
Serum SGOT (UI/L) Median [Q1,Q3] 39.0 [31.5,57.5] 98.0 [50.0,101] 44.5 [37.8,98.8] 50.0 [32.0,87.5] 94.0 [54.0,141] 53.5 [34.0,104] 
Serum SGPT (UI/L) Median [Q1,Q3] 36.0 [30.5,56.5] 32.0 [32.0,78.0] 34.0 [31.3,75.8] 40.5 [25.8,90.0] 44.0 [32.0,65.0] 43.0 [27.0,81.0] 
Serum albumin (g/dL) Median [Q1,Q3] 3.25 [2.95,3.55] 2.50 [2.20,3.20] 3.10 [2.65,3.50] 3.50 [3.11,3.88] 2.77 [2.30,3.13] 3.40 [2.99,3.80] 
Serum sodium (meq/L) Mean (SD) 137 (3.51) 138 (3.27) 137 (3.27) 135 (4.59) 134 (4.90) 134 (4.64) 
Serum potassium (meq/L) Median [Q1,Q3] 3.67 [3.50,3.95] 3.60 [3.60,4.30] 3.64 [3.55,4.23] 3.60 [3.30,3.92] 3.60 [3.35,3.98] 3.60 [3.30,3.93] 
Serum chloride (meq/L) Mean (SD) 99.9 (4.34) 104 (10.9) 102 (7.61) 97.9 (8.10) 99.1 (6.51) 98.1 (7.84) 
Serum bicarbonate (meq/L)       
Mean (SD) 24.9 (3.11) 19.3 (7.02) 22.6 (5.60) 24.6 (7.80) 19.5 (5.26) 23.7 (7.66) 
SOFA score Median [Q1,Q3] 0 [0,5] 10 [8,14] 6 [0,8.5] 2 [1,4] 12.5 [10.8,14.3] 3 [1,6] 
Number of organ involvement       
Median [Q1,Q3] 0 [0,1.5] 4 [2,4] 2 [0,3.25] 1 [0,1] 4 [3,5] 1 [0,2] 
Leptospiral diagnostic features 
Positive MAT, n (%) 1 (14.3) 1 (20.0) 2 (16.7) 47 (33.6) 10 (35.7) 57 (33.9) 
Leptospiremiaa, n (%) 7 (100) 5 (100) 12 (100) 117 (83.6) 27 (96.4) 144 (85.7) 
Patient outcomes 
ICU admission, n (%) 1 (14.3) 4 (80.0) 5 (41.2) 7 (5.0) 24 (85.7) 31 (18.5) 
Hospital mortality, n (%) 0 (0) 1 (20.0) 1 (8.3) 3 (2.1) 8 (28.6) 11 (6.5) 
90-day mortality, n (%) 0 (0) 1 (20.0) 1 (8.3) 4 (2.9) 9 (32.1) 13 (7.7)  

a Leptospiremia was defined as either positive blood qPCR for pathogenic Leptospira spp. or a positive blood culture.  
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Fig. 2. Discovery and validation of serum microRNAs. (A) Volcano plot showing the log2 fold-change in relation to -log10 q-values of the miRNAs expression levels. The log2 fold- 
change and q-values were calculated using the empirical Bayes method in limma and qvalue R packages (moderated t-statistics). The red and blue circles represent up- and down- 
regulated miRNAs, respectively. The miRNAs with lowest q-values and largest fold-changes were labeled. (B) Heatmap showing the distance clustering of the top miRNAs, using 
Euclidean method incorporated in pheatmap R package. The color gradient describes the row-normalized z-score. (C) Violin plots comparing relative expressions of the seven 
miRNAs. The relative expression was calculated following the 2-ΔΔCT method, with miR-16–5p as reference. The dots represent a log10 relative expression of a miRNA for one 
patient. The p-values were calculated using two-sample Welch’s t-test. SPHS: severe pulmonary hemorrhagic syndrome. 
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pathways with less overlap. Interestingly, many pathways belonging 
to the cell community and motility, infectious disease and signal 
transduction category overlapped with those enriched by miRNA 
targets (Fig. 5A). There were 17 pathways that appeared in up- 
regulated genes, proteins and the two miRNAs (Fig. 5B). 

To further retain the most relevant pathways, integrated analysis 
incorporating transcriptomic and proteomic data at the gene ID level 
was conducted, which yielded nine pathways. Among them, three 
emerged through combined-omics enrichment, with the TNF sig
naling pathway standing out as the most significant, evidenced by 
the lowest adjusted p-value (S-Table 7). Notably, TNF signaling 
pathway also had its member genes targeted by the two miRNA 
biomarkers (Fig. 5C). The ranked list of genes and protein’s view 
revealed that CASP10, the target of miR-5010–3p, and AKT2 and 
PGAM5, the target of miR-147b-3p, showed consistent down-reg
ulation in both layers (Fig. 5D and S-Fig. 8). These signals suggested 
that TNF signaling pathway might be an important host response 
mechanism in SPHS. 

TNF signaling pathway proteins and miRNA biomarkers 

The significance of TNF signaling pathway proteins was con
firmed by Olink® proteomics results, with seven out of ten proteins 
showing significant differences, especially the upregulation of TNF in 
SPHS patients (Fig. 6A). SPHS and non-SPHS patients formed two 
clusters based on the first two principal components (PC) (Fig. 6B), 
indicating distinct global expression profiles of TNF signaling 
pathway proteins between the two phenotypes. 

In 47 patients with paired measurements of miRNA and TNF 
signaling proteins, correlation analysis showed a similar pattern 
between miR-5010–3p or miR-147b-3p and the proteins. Significant 
positive correlations were found between miR-5010–3p and TNF, 
CCL20, while significant negative correlations were with CASP8, LTA, 
and CXCL5 (Fig. 7A). For miR-147b-3p, only the correlation with 
CCL20 reached significant threshold (Fig. 7A). Further analysis re
vealed that the correlation between miR-147b-3p and its target, LIF, 
was modulated by TNF level, indicated by a significant miR-147b- 
3p–TNF interaction term (p-interact < 0.05 and p-value adjusted for 
interaction term < 0.05) with different regression slopes based on 
TNF levels (Fig. 7B, upper and lower left). In contrast, no significant 
interaction term was found for the miR-5010–3p and CASP8 or 
CXCL5 pair (Fig. 7B, upper and lower right, p.interact > 0.05). 

Eigencor plot showed strong correlations between the PC1 and PC2 
of the TNF signaling pathway profile and clinical severity parameters, 
such as SOFA (r=0.72) and hematocrit levels (r=−0.39). Meanwhile, PC1 
and PC5 significantly correlated with miR-5010–3p (r=0.28 and −0.26, 
respectively). PC1 was primarily influenced by IL6 and CXCL5, while PC5 
was explained by CASP8, TNF and CCL20 (Fig. 7C). This evidence sug
gested correlations between TNF signaling pathway proteins and miR- 
5010–3p, though these were less dominant than the correlations be
tween the cytokines and clinical severity. 

The expression patterns of TNF signaling pathway proteins and 
miRNA biomarkers enhanced the characterization of SPHS patients. 
In Fig. 8A, two clusters emerged: the first included miR-5010–3p, 
miR-147b-3p, CSF1, IL18R1, LIF, CCL20, TNF, and IL6, while the second 
included CASP8, LTA, CXCL1, and CXCL5. Most SPHS patients showed 
upregulation of the first cluster and downregulation of the second, 

Table 2 
Sensitivity and specificity at optimal cut-off points of the microRNAs.       

Maximized sensitivity+specificity (Youden’s method) Sensitivity controlled at 99% Specificity controlled at 99%  

miR-5010-3p    
Cut-off (log10 relative expression) 0.518 −0.390 1.390 
Sensitivity (95%CI) 0.68 (0.50−0.86) 1 (1−1) 0.18 (0.04−0.32) 
Specificity (95%CI) 0.77 (0.70−0.84) 0.26 (0.19−0.34) 0.99 (0.96−1) 
miR-147b-3p    
Cut-off (log10 relative expression) 0.433 −0.484 1.425 
Sensitivity (95%CI) 0.61 (0.42−0.79) 1 (1−1) 0.14 (0.03−0.29) 
Specificity (95%CI) 0.74 (0.66−0.80) 0.20 (0.13−0.27) 0.99 (0.96−1) 
Combination 1: 5010-3p+548ai    
Cut-off (predicted probability) 0.223 0.020 0.413 
Sensitivity (95%CI) 0.86 (0.71−0.96) 1 (1−1) 0.39 (0.21−0.57) 
Specificity (95%CI) 0.76 (0.69−0.83) 0.20 (0.14−0.27) 0.99 (0.98−1) 
Combination 2: 5010-3p+548ai+224-5p    
Cut-off (predicted probability) 0.186 0.013 0.423 
Sensitivity (95%CI) 0.79 (0.61−0.93) 1 (1−1) 0.42 (0.25−0.61) 
Specificity (95%CI) 0.82 (0.77−0.88) 0.10 (0.05−0.15) 0.99 (0.98−1)    

Fig. 3. MiRNAs as biomarkers of leptospirosis SPHS. (A) Receiver Operating Characteristics (ROC) curve analyses. The curves are colored by the seven miRNAs of interest. Area 
under the curve (AUC) values and 95% CIs were calculated using pROC R package, using the log10 relative expression of the corresponding miRNAs against their SPHS classification. 
(B) Correlation matrix between miRNAs and clinical indicators of acute blood loss and severity. Correlations between miRNAs and clinical features were performed using 
Spearman’s test. The gradient indicates correlation coefficients, with positive value in red and negative in blue. The dot size represents the magnitude of the value. The numbers 
inside the dots represent the correlation coefficients. The asterisk indicate a significant correlation. (C) AUC values in relation to chest radiographs (CXR) and fever day. For this 
figure, SPHS patients were classified as already having abnormality on chest radiographs (n=22) or not (n=6) (at blood collection) and compared with non-SPHS patients (n=140). 
For fever day, we divided the 168 patients into two groups (day 2 or earlier and day 3 or above), each comprised 66 (non-SPHS = 59, SPHS = 7), 72 (non-SPHS = 81, SPHS = 21) 
patients, respectively. AUC values and 95% CIs were calculated and plotted as previous analyses. (D) MiRNA combination selected by BMA algorithm. Each row indicates whether a 
miRNA should be included (colored in red or blue), or not (white color). The red bars mean a positive coefficient in the logistic regression model, whereas blue bars mean negative. 
It could be observed that the first model includes miR-3131, miR-5010–3p, miR-548ai and miR-224–5p; whereas the second model includes miR-5010–3p, miR-548ai and miR- 
224–5p; and so on. (E) ROC curve analyses of the miRNA models. The ROC curve and AUC values were first calculated by fitting a miRNA model with logistic regression with SPHS 
group as outcome variables. After that, the predict function was used to calculate the individual risk (probability value) of each patient when evaluating by the miRNA model. The 
risk was then used to calculate the AUC and ROC curve following method in figure A. (F) Novel miRNA biomarkers enhanced clinical model prediction. The baseline model 
included five clinical parameters: respiratory rate, Glasgow < 15, serum creatinine, serum potassium and shock at admission (Marotto et al.). The original equation of the baseline 
model was used to calculate the individual risk, then the risk was used to calculate AUC values and ROC curve as in figure A. MiRNA was added to the model and followed the same 
process to draw the ROC curves. The baseline model and the model with miRNA were compared using ROC test function in pROC R package, following De Long’s method. (G) 
Reclassification table. The table was created using the predictABLE R package, with the clinical model as baseline and model with miRNA as updated model. The risk cutoff was 
defined at 50% based on the original paper of the clinical model. The colored cells indicated consisted of classification between baseline and updated model. SOFA: Sequential 
Organ Failure Assessment. RC: Reclassification. NRI: net reclassification index. IDI: Integrated Discrimination Index. AUC: area under the curve. ROC: receiver operating char
acteristics. 
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Fig. 4. Global transcriptomics and proteomics profiling. (A) and (C) Volcano plots showing the log2 fold-change in relation to -log10 q-values of the miRNAs. The log2 fold-change 
and q-values were calculated using the empirical Bayes method in limma and qvalue R packages (moderated t-statistic). The red and blue circles represent up- and down-regulated 
genes/proteins, respectively. The miRNAs with lowest q-values and largest fold-changes were labeled. (B) and (D) Heatmaps showing the distance clustering of the top genes/ 
proteins, using Euclidean method incorporated in pheatmap R package. The color gradient describes the row-normalized z-score. (E) Conjoint plot showing the consistency 
between the log fold-change of the transcriptomics and proteomics data. The red dots represent consistently up-regulated pairs, blue dots represent consistently down-regulated 
pairs, purple dots represent inconsistent pairs. Only selected gene/protein symbols were labeled. 
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with non-SPHS and low SOFA score patients showing the opposite 
pattern (Fig. 8A). Single proteins discriminated SPHS with AUC va
lues of 0.86 (CXCL5), 0.78 (CCL20), 0.74 (IL6), and 0.72 (TNF), though 
these were generally less effective compared to miR-5010–3p (0.89). 
Combination of cytokines and miRNA biomarkers, as indicated by 
the BMA algorithm, improved the performance. For example, com
bining miR-5010–3p, CXCL5, and IL6 increased the AUC to 0.98 
(Fig. 8B). These findings suggest the potential for a biomarker panel, 
which should be confirmed in future studies with larger sample 
sizes. 

Discussion 

In this study, we discovered and validated miR-5010–3p and miR- 
147b-3p as novel biomarkers for SPHS in leptospirosis patients. 

These miRNAs had good performance that was robust for the po
tential confounders and exhibited early changes in the acute phase 
of the disease. Integration of the novel microRNA biomarkers ap
pears to significantly enhance the performance of clinical model and 
improve reclassification. Using multi-omics pathway enrichment 
approach, TNF signaling pathway was identified as among the key 
pathways and subsequently had its member proteins validated to be 
differentially expressed. Significant correlations between miRNA 
biomarkers and the TNF signaling pathway proteins’ principal 
components might indicate their relevance in the pathogenesis of 
the syndrome. 

Few prior studies have focused on developing leptospiral SPHS 
biomarkers. One study suggested platelet-activating factor acet
ylhydrolase, but the marker was evaluated in patients with unclear 
clinical manifestation of SPHS.12 Cytokines like IL-5, IL-6, IL-8, and 

Fig. 5. Multi-omics pathway enrichment analysis. (A) Dot plots showing the significantly enriched KEGG pathway terms. Y-axis displays the selected pathway terms and x-axis 
indicates the types of molecular sets subjected to enrichment analyses. The dot size corresponds to the overlap ratio, which is calculated by dividing the proportion of overlap 
(number of molecules overlapped/total number of genes in the term) for the set size. The dots are colored by the -log10 adjusted p-values, spanning from blue (larger p-value) to 
red (smaller p-value). The terms on y-axis are grouped according to their KEGG category, which is annotated by colored bars. The complete enrichment results are provided in the  
Supplementary materials (Supplement.KEGG.enrich.results.xlsx). (B) Upset plot showing the intersections between the enrichment results. The six rows at the bottom represent 
the six types of molecule sets. The dots and lines represent different scenarios of intersection between the enriched terms of the sets. Black and gray dots indicate intersected and 
not intersected, respectively. The vertical bars at the top represent intersection size. The horizontal bars indicate the set size. (C) Enrichment map showing the link between 
miRNAs biomarkers and the significant pathways from Activepathways analysis. Dot size corresponds to the p-value of the pathway terms, while lines represent shared genes 
between the terms and miRNA targets. (D) Distribution of microRNA targets in transcriptomic and proteomic data. The gray bands represent the moderated t-statistics of the 
molecules in transcriptomic and proteomic data, ordered by their magnitude. The red and blue lines indicate the targets of miR-5010–3p and miR-147b-3p respectively. The 
asterisks indicate significant differences. Notice the consistent down-regulation of some miRNA targets in both layers (black arrows). 
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IL-10 have been reported to be elevated in SPHS patients, though 
their predictive roles have not been assessed.13,45 A recent study 
highlighted serum macrophage migration inhibitory factor for dis
criminating leptospirosis SPHS from other febrile illnesses, but most 
confirmed cases had prolonged disease duration before blood col
lection, limiting its predictive value.14 Compared to current litera
ture, the novel miRNA biomarkers were developed from a sufficient 
sample size with relatively large number of well-characterized SPHS 
cases. Their stable discriminatory performance was proven through 
adjustment for potential confounding effects of age, sex and re
cruitment sites. More importantly, the miRNAs displayed earlier 
change compared to routine chest X-ray imaging and had the po
tential to combine with other miRNAs or proteins to improve pre
dictability and specificity. 

Our study also revealed TNF signaling pathway as among the key 
host response mechanisms in leptospirosis SPHS, which appeared to 
align with existing evidence. Previous studies have confirmed the 
higher levels of TNF-α in leptospirosis patients than in healthy 
controls, with the cytokine elevation linked to bleeding and organ 
involvement, especially the lungs.46,47 These finding was later re
inforced by one study that observed the association between TNF-α 
and pulmonary hemorrhage in Weil syndrome patients.48 Interest
ingly, IL6, another pathway member cytokine, was also demon
strated to be significantly upregulated in leptospiral SPHS patients in 
two separate studies.13,45 These findings, along with our results, 
strongly underscore the importance of TNF signaling pathway in 
leptospirosis SPHS. 

Existing evidence suggests several mechanisms on how TNF 
signaling pathway might contribute to alveolar-lung capillary barrier 
breakdown and lung hemorrhage. TNF-α is a proinflammatory cy
tokine that mediates the host response to facilitate pathogen clear
ance. However, its overexpression can lead to a cytokine storm and 
increased severity of illness.49 TNF-α can stimulate the endothelium, 
increasing the expression of adhesion molecules and chemokines, 
and amplifying the inflammatory response by inducing NF-κB and 

MAPK signaling, which subsequently triggers the expression of ad
ditional pro-inflammatory cytokines and recruits immune cells to 
the site of inflammation, resulting in tissue damage and vascular 
leakage.50,51 Moreover, TNF- α can alter the expression and locali
zation of tight junction proteins between endothelial cells, in
creasing permeability of the endothelial barrier.52 TNF-α can further 
induce the production and activation of certain members of the 
matrix metalloproteinase family, enzymes that degrade extracellular 
matrix components and play a crucial role in both injury and repair 
of the alveolar capillary membrane in acute lung injury.53–55 In ad
dition, TNF-α has been proposed to regulate the expression of the 
epithelial sodium channel transporter in alveolar epithelial cells and 
tubular cells, a mechanism implicated in pulmonary edema and 
acute kidney injury in leptospirosis.56 

Our findings regarding the association between miR-147b-3p and 
TNF signaling pathway protein resonates well with previous studies. 
Liu et al. demonstrated that miR-147b production is induced by Toll- 
like receptor (TLR) stimulation in murine macrophages, acting as a 
negative feedback loop to inhibit the inflammation induced by TLR 
itself. Transfection of miR-147b or its mimics significantly reduced 
the expression of inflammatory cytokines, including TNF-α.57 An
other study confirmed miR-147b’s role as an inflammatory regulator, 
showing it alleviates inflammation in a rat acute lung injury model 
and A549 cells, with TNF-α levels reduced in cells transfected with 
miR-147b mimics.58 Based on this evidence, the up-regulation of 
miR-147b-3p seen in our study might reflect the host response to 
control the inflammation inflicted by the increased TNF level. 

Although our most important miRNA biomarker, miR-5010–3p, 
has not been previously studied for its role in the inflammatory 
response or lung hemorrhage, its correlations with many proteins 
from TNF signaling pathway might suggest some potential me
chanisms of action. CXCL5, a chemokine known to be induced in 
acute respiratory infections and produced primarily by alveolar type 
II epithelial cells, is a potent neutrophil attractant that affects lung 
inflammation trajectory.59 It has been found to be upregulated in 

Fig. 6. Expression profile of TNF signaling pathway proteins. (A) Boxplots showing the expression levels of 10 proteins related to TNF signaling pathways. The dots represent 
potential outliners. The asterisks represent significant moderated t-tests, q-value < 0.05, NS: not significant, NPX: normalized protein expression unit. (B) Principal component 
analysis showing the clustering of SPHS and non-SPHS patients as subjected to the first two principal components. Each dot represents one patient. PC1: principal component 1, 
PC2: principal component 2. 
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lungs of mice resistant to Leptospira infection, but not susceptible 
ones, suggesting its importance to controlling Leptospira infection 
and lung inflammation.60 The negative correlation between CXCL5 
and miR-5010–3p might indicate an inflammation-modulating role 

of miR-5010–3p in patients with leptospirosis SPHS. Furthermore, 
significant negative correlation between miR-5010–3p and CASP8 
might reveal its role in regulating cell apoptosis. The miRNA-induced 
suppression of cell apoptosis might either be a beneficial host 

Fig. 7. MiRNA biomarkers and TNF signaling pathway proteins correlation analysis. (A) Correlation matrix between miRNAs and the 10 proteins in TNF signaling pathway. The 
color gradient indicates correlation coefficients, with positive value in red and negative in blue (Pearson’s test). Dot size correlates with the coefficient values, which are provided 
as black numbers within the dot. The asterisk indicates a significant test (p-value < 0.05). The thickened outline indicates the target of the miRNAs as reference from microRNA 
validated target databases. (B) Scatter plot with simple linear regression LIF ∼ miR-147b-3p (upper left), multivariable linear regression with a significant interaction term LIF ∼ 
miR-147b-3p*TNF (lower left) and multivariable linear regression without a significant interaction term CASP8 ∼ miR-5010–3p + TNF (upper right), CXCL5 ∼ miR-5010–3p + TNF 
(lower right). P.adj: p-value of the corresponding miRNA covariate in the multivariable linear regression model with TNF levels. P.interact: p-value of the likelihood ratio test, 
which tests whether the model with an interaction term fits the data better than the model without an interaction term. NPX: normalized protein expression unit. (C) Eigencor 
plot (left side plot) showing the correlation between some continuous variables with the principal components of the TNF signaling pathway expression profile. The number in 
each tile represents the correlation coefficient of the respective continuous variable-principal component pair. The asterisks indicate significant tests (p-value < 0.05 = *, < 0.01 = **, 
< 0.001 = ***). Component loading plot (right side plot) showing the underlying calculations of each PC, which elaborates the contribution of the proteins to the PCs. PC: principal 
component. SOFA: Sequential Organ Failure Assessment. 
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response to counteract apoptosis signals inflicted by pathogenic 
Leptospira,61,62 or it might also lead to detrimental prolonged in
flammation, causing tissue damage and lung hemorrhage. Many 
possibilities might explain the positive correlation between miR- 
5010–3p and TNF, however, negative feedback might also be pos
sible, similar to miR-147b-3p. Since the current evidence is mostly 
suggestive, further investigation of miR-5010–3p regulatory role via 
the TNF signaling pathway in leptospirosis SPHS should yield great 
insights into miRNA-based therapy and precision medicine in severe 
leptospirosis. 

This study demonstrates numerous strengths. To our knowledge, 
it is the first investigation to specifically explore and validate the 
roles of circulating miRNAs as biomarkers for SPHS in patients with 
leptospirosis. By recruiting cases from multiple sites across Thailand, 
the findings are generalizable to similar healthcare settings. The 
sample size was carefully determined to ensure precise estimates of 
the AUC value and its confidence intervals. Additionally, the systems 
biology approach, followed by pathway protein validation, con
firmed the significance of TNF signaling in SPHS and identified the 
potential target pathway through which the miRNA biomarkers 
might be involved in the pathogenesis of leptospiral SPHS. 

This study has certain limitations that warrant consideration. 
Firstly, although the miRNAs could identify SPHS earlier than chest 
radiograph manifestations, most patients were admitted only after 
severe symptoms had already appeared. The predictive value of the 
miRNA biomarkers should be further confirmed in studies recruiting 
patients earlier in the disease course. Secondly, half of our samples 
showed signs of hemolysis. Although we have accounted for this 
using an appropriate endogenous normalizer and sensitivity 

analysis, contamination from red blood cell miRNAs on the circu
lating miRNA is possible and should be minimized in future studies. 
Thirdly, serum collection involves a coagulation process during 
which blood cells miRNAs can be released and alter circulating 
miRNA levels. Finally, fasting status and nutrition intake have been 
shown to affect circulating miRNA expression but could not be ac
counted for in this study. 

Conclusions 

MiR-5010–3p and miR-147b-3p are novel biomarkers with good 
predictability and potential relevance with TNF signaling pathway, 
an important host response mechanism in leptospirosis SPHS. 
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