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Objectives: Safety and immunogenicity assessment of updated monovalent and bivalent SARS-CoV-2 vac-
cines in adolescents.
Methods: This phase 3, double-blinded study randomised 12- < 18-year-old participants, who received 22
prior doses of an approved/authorised mRNA-based COVID-19 vaccine, 1:1 to receive NVX-CoV2601
(XBB.1.5) or a bivalent vaccine (NVX-CoV2373 [Wuhan] + NVX-CoV2601). The primary immunogenicity
endpoint was day-28 neutralising antibody (nAb) geometric mean titres (GMTs) against XBB.1.5. Safety
endpoints were solicited reactogenicity <7 days and unsolicited adverse events (AEs) <28 days post-vac-
cination and frequency/severity of predefined AEs of special interest through day 180.
Results: Of 401 randomised participants, nAb GMTs against XBB.1.5 increased (GMFR [95% CI]) for both
NVX-CoV2601 (12.2 [9.5-15.5]) and the bivalent vaccine (8.4 [6.8-10.3]); post-vaccination responses to
ancestral SARS-CoV-2 and the JN.1 variant were also observed. Increases in anti-spike IgG levels were
comparable between the groups. Solicited and unsolicited AEs were mild to moderate, with similar oc-
currence among the groups. Severe and serious events were rare and unrelated to the study vaccines; no
PIMMCs or myocarditis/pericarditis were reported.
Conclusions: NVX-CoV2601 elicited more robust antibody responses to XBB.1.5 and ancestral virus, com-
pared with a bivalent formulation. The safety profile within each group was consistent with NVX-CoV2373,
which contains ancestral recombinant spike protein.
© 2025 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
COVID-19
SARS-CoV-2
Booster
Variant

of viral variants have resulted in immune evasion and decreased
immunity in recipients of these initial vaccines.*° In May and June

Introduction

Vaccines (i.e., mRNA-1273, BNT162b2, and NVX-CoV2373) to
ancestral severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) played a significant role in the early management of the
COVID-19 pandemic.' > Rapid evolution and widespread circulation
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of 2023, regulatory agencies (i.e., the World Health Organisation
[WHO], the European Medicines Agency [EMA], and the Vaccines
and Related Biological Products Advisory Committee of the United
States [US] Food and Drug Administration [FDA]) had regional
meetings to discuss updates to COVID-19 vaccines and provided
direction that formulations be monovalent compositions directed to
XBB.1.5.”~? This guidance was primarily based on nonclinical data for
cross-neutralising antibody production from XBB.1.5-based vaccines
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across XBB subvariants®'®'" and was partially based on evidence
that variant strain mutations in the XBB sublineages were pre-
served.'? Additional support for XBB as a reasonable vaccine target is
that this lineage of variants has demonstrated the ability to evade
neutralising antibodies from both natural immunity and those in-
duced by prior versions of COVID-19 vaccines.'?" '

NVX-CoV2601 is an adjuvanted nanoparticle vaccine that con-
tains recombinant spike (rS) protein from XBB.1.5 and Matrix-M™
adjuvant. Matrix-M is a saponin-based adjuvant shown to stimulate
immune responses across a variety of vaccines.'>'® NVX-CoV2601
was generated based on similar protein technology used for the
authorised vaccine (NVX-CoV2373) that contains the rS of ancestral
SARS-CoV-2. Using clinical data from NVX-CoV2373 studies and
preclinical data for the new formulation, NVX-CoV2601 was au-
thorised for use in those aged >12 years by the EMA, the US FDA, and
the WHO in the fall of 2023,'7-'° and is supported by clinical findings
in adults.””

Based on the rapid evolution of SARS-CoV-2 subvariants and
shifts in recommendations from authorities, future vaccine re-
commendations have the potential to be monovalent (as per current
guidance)’ ? or bivalent (as with the ancestral and BA.5 combination
in 2022). Clinical immunogenicity and safety data in adolescents for
variant-based vaccines, particularly XBB.1.5, are limited.”"** As
vaccines are updated, it is critical to continue gathering im-
munogenicity and safety data, across populations, not only for reg-
ulatory compliance, but also to inform the development of future
vaccines. The 2019nCoV-314/NCT05973006 phase 3, randomised,
double-blind trial was conducted to evaluate the safety and im-
munogenicity of the XBB.1.5-directed vaccine, NVX-CoV2601, in its
monovalent form and as a bivalent combination with the initial
vaccine targeting ancestral SARS-CoV-2 (NVX-CoV2601 + NVX-
CoV2373). To provide additional data on adolescents, who are part of
the indicated population for the vaccine, a targeted population of 12-
to < 18-year-olds in the US who had received >2 doses of an mRNA-
based COVID-19 vaccine (mRNA-1273 or BNT162b2) were enroled.

Methods
Study design and participants

The phase 3, randomised, observer-blinded 2019nCoV-314/
NCT05973006 study enroled previously vaccinated adolescents to
evaluate the safety and immunogenicity of a single dose of nano-
particle monovalent (NVX-CoV2601 [XBB.1.5 1S]) and bivalent (NVX-
CoV2601 plus NVX-CoV2373 [ancestral SARS-CoV-2 rS]) vaccines
containing SARS-CoV-2 1S protein and adjuvanted with Matrix-M™
(Fig. S1). Participants were medically stable 12- to <18-year-olds
screened across 20 sites in the US and had received >2 prior doses of
an approved/authorised mRNA vaccine >90 days prior to study
vaccination. Key exclusion criteria were receipt of other investiga-
tional vaccines <90 days or an influenza vaccine <14 days before
study vaccination, ongoing immunomodulatory therapy, chronic
administration of immune-modifying drugs <90 days of study vac-
cination, or a history of myocarditis/pericarditis. Other vaccines re-
commended for 12- to <18-year-olds were allowed, as medically
indicated. Participants found to be SARS-CoV-2 positive during the
study were not excluded from participation. Informed consent was
collected for each participant.

Participants were randomised 1:1 on day O per an interactive
web response system and stratified by number of prior COVID-19
vaccinations. Study personnel were blinded to vaccine assignment,
other than predetermined individuals who managed vaccine logis-
tics (e.g., preparation, administration), and did not have a role in
study-related assessments or data collection. Participants were un-
blinded after the end of the study. The trial protocol can be found in
the Supplementary material.
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Procedures

Participants were screened up to 14 days before study vaccine
administration (day 0); if feasible, screening and day 0 could be the
same day (Fig. S1). On day 0, prior to study vaccine administration,
nasal swabs were collected to perform qualitative polymerase chain
reaction (PCR) for SARS-CoV-2 infection and blood samples for im-
munogenicity testing. Immunogenicity was assessed through these
validated assays: anti-rS IgG** enzyme-linked immunosorbent assay
(ELISA) and pseudovirus neutralising antibody assay for XBB.1.5 and
the ancestral SARS-CoV-2 strain.’® Participants received a single
intramuscular injection of NVX-CoV2601 (5 pg rS) or a bivalent
vaccine (NVX-CoV2601 + NVX-CoV2373; 2.5 ng 1S of each), which
were formulated with 50 pg of Matrix-M™ adjuvant. There was a
minimum 15-min observation period to monitor for any immediate
hypersensitivity/anaphylaxis reactions. Follow-up visits occurred in
person on days 28, 90, and 180 (end of study) and via phone on days
56, 118, and 146. Safety was assessed throughout the study. Addi-
tional blood samples for immunogenicity tests were collected during
in-person visits.

Outcomes

Participants were trained to use an eDiary to record any solicited
reactogenicity events post-study vaccination, from day 0 through
day 6. Solicited local (i.e., pain, tenderness, redness, or swelling) and
systemic (i.e., fever, nausea/vomiting, headache, fatigue/malaise,
muscle pain, and joint pain) treatment-emergent adverse events
(TEAEs) were recorded in the eDiary. Unsolicited TEAEs (incidence,
severity, and relation to vaccine) were collected through 28 days
post-vaccination. These included adverse events of special interest
(AESI), serious adverse events (SAEs), and medically attended ad-
verse events (MAAEs). AESIs, SAEs, and related MAAEs were col-
lected through day 180. TEAEs were coded according to system
organ class and preferred term per the Medical Dictionary for
Regulatory Activities version 26.0. Investigators documented TEAE
severity and assessed relation to study vaccine. AESI included po-
tentially immune-mediated medical conditions (PIMMCs), myo-
carditis/pericarditis, and complications specific to COVID-19.
Immunogenicity was investigated in each vaccine group by assessing
neutralising antibody and anti-rS IgG responses to XBB.1.5 and the
ancestral strain through validated assays.”*** Exploratory outcomes
included immunogenicity responses to the JN.1 variant.

Statistical analyses

Sample size was based on clinical and practical considerations
and not on a formal statistical power calculation. With 200 partici-
pants in each treatment group, the probability to observe at least
one participant with a TEAE was > 99.9%, if the true incidence of the
TEAE was 5% (86.6% probability if the true incidence was 1%). This
study was not powered for cross-group comparisons of non-
inferiority or superiority.

The primary safety objective was assessed through post-study
vaccination endpoints of reactogenicity through day 6; unsolicited
TEAEs through day 28; and AESI, SAEs, and related MAAEs through
day 180. The safety analysis sets included all participants who pro-
vided consent, were randomised, received at least one dose of study
vaccine, and were analysed per treatment actually received. All
safety analyses were descriptive, with the number and percentage of
participants recorded based on highest degree of TEAE severity and
relatedness to the study vaccine; 95% Cls were calculated using the
Clopper-Pearson method.

The primary immunogenicity objective was to describe the
neutralising antibody response of each vaccine group against XBB.1.5
via primary endpoints of geometric mean titres (GMTs, IDsg) at day
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Fig. 1. CONSORT diagram.

28 and geometric mean fold rise (GMFR) in GMTs from day O to day
28. Secondary immunogenicity endpoints included assessment of
the neutralising antibody response and seroresponse rate (SRR) at
days 90 and 180 as well as anti-rS IgG geometric mean ELISA units
(GMEUs) and associated outcomes at days 0, 28, 90, and 180.
Assessments included GMFRs and SRRs at days 28, 90, and 180,
compared with day 0. The per-protocol analysis sets included all
participants who received the prescribed study vaccine; had ser-
ology results for both day 0 (baseline) and another time point being
analysed; were PCR negative at baseline for SARS-CoV-2; and had no
major protocol violations or events that might have impacted the
immunogenicity response (see Supplementary material for more
details on protocol deviations). A per-protocol analysis set was de-
termined for each immunogenicity assay and study visit. This study
was not designed (and samples size was not powered) for formal
statistical evaluation of immunogenicity.

GMTs/GMEUs and corresponding 95% Cls were summarised by
vaccine group. GMTs were calculated as the antilog of the mean of
log-transformed titre values and GMFR as the antilog of the mean of
log-transformed fold-rises. The 95% Cls were calculated based on the
t-distribution of the log-transformed GMT or GMFR, then back
transformed to the original scale. Between-group GMT ratios
(GMTRs) and the two-sided 95% Cls were computed using the ana-
lysis of covariance with the vaccine group as the fixed effect and the
titre at day O (i.e., adjusted for intergroup variation in baseline [pre-
vaccination] titres) as the covariate. The mean difference between
vaccine groups and the corresponding CI limits were exponentiated
to obtain the GMTRs and the corresponding 95% Cls. Seroresponse
was defined as a >4-fold increase in post-vaccination titre from
baseline (or from the lower limit of quantification if the baseline
value was below this limit). SRR and SRR difference 95% CIs were
calculated based on the Clopper-Pearson exact and
Miettinen-Nurminen methods, respectively. Anti-rS IgG GMEUs,
GMFRs (compared with day 0), and 95% Cls were summarised.

Exploratory analyses included comparison of immunogenicity
outcomes to adolescent (aged 12 to < 18 years) participants from the
2019nCoV-301 phase 3 study. This comparator group had received
two study doses of NVX-CoV2373 (21 days apart), as a primary series
and a 3rd dose within 5 months of completion of the primary series.
Other exploratory analyses were immunogenicity responses to the
JN.1 strain. These assessments were conducted in a subset (90
baseline anti-nucleoprotein [NP] positive and ~10 baseline anti-NP

negative) of participants; the anti-NP baseline seropositive partici-
pants had received at least three prior vaccine doses.

Ethics approval

The trial protocol was approved by the Independent Ethics
Committee and the study was performed in accordance with the
Declaration of Helsinki and the International Conference on
Harmonization Good Clinical Practice guidelines. Clinical monitoring
was conducted by Syneos Health (Morrisville, NC).

Results

Of 433 participants screened for eligibility from September 7 to
26, 2023, 401 (93%) were randomised, and 32 (7%) were excluded; 24
(6%) did not meet inclusion/exclusion criteria, two (< 1%) withdrew
consent, and six (1%) were not randomised prior to enrolment clo-
sure (Fig. 1). Of the 401 randomised participants, 190 (47%) partici-
pants were randomised to receive NVX-CoV2601, and 211 (53%)
participants were randomised to receive the bivalent vaccine. The
safety analysis sets included all participants randomised to the NVX-
CoV2601 group and 210/211 (<100%) participants in the bivalent
group (one vaccine was not administered). The day-28 per-protocol
analysis sets (database lock May 17, 2024) included 178/190 (94%)
and 194/211 (92%) participants in the NVX-CoV2601 and bivalent
vaccine groups, respectively.

Participant demographics were balanced between the day-28
per-protocol analysis sets (Table 1). Overall, there were slightly more
female (194/372 [52%]) than male participants, and most partici-
pants were White (269/372 [72%]). Median age (interquartile range
[IQR]) in the NVX-CoV2373 and bivalent vaccine groups was 15.0
years (13.0-16.0) and 14.5 years (13.0-16.0), respectively. Most
participants had received two prior (NVX-CoV2601: 77/178 [43%];
bivalent: 89/194 [46%)]) or three prior (67/178 [38%]; 75/194 [39%])
mRNA COVID-19 vaccines (versus four or five prior vaccines). Median
days (IQR) since the most recent dose to study vaccination were
585.5 (340.0-658.0) and 593.5 (369.0-708.0) for NVX-CoV2601 and
the bivalent vaccine, respectively. Demographics in the safety ana-
lysis sets were comparable between the groups and followed the
same trends as in the per-protocol analysis sets (Table S1).

Any solicited TEAE occurred in 153/190 (81%) and 166/210 (79%)
participants in the NVX-CoV2601 and bivalent safety analysis sets,
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Demographics and baseline clinical characteristics in the day-28 per-protocol analysis sets.

Characteristic NVX-CoV2601 (N=178) Bivalent vaccine (N=194) NVX-CoV2373" (N=114)
Age, years

Mean (SD) 14.6 (1.73) 14.5 (1.67) 13.9 (1.47)

Median (IQR) 15.0 (13-16) 14.5 (13-16) 14.0 (12-15)
Sex

Female 95 (53.4) 99 (51.0) 47 (41.2)

Male 83 (46.6) 95 (49.0) 67 (58.8)
Race

White 128 (71.9) 141 (72.7) 103 (90.4)

Black or African American 30 (16.9) 37 (19.1) 3(2.6)

Multiple 9 (5.1) 10 (5.2) 6 (5.3)

Asian 8 (4.5) 2 (1.0) 2(1.8)

Other 2(11) 2 (1.0) 0

Native Hawaiian/Other Pacific Islander 1(0.6) 1(0.5) 0

Not reported 0 1(0.5) 0
Ethnicity

Not Hispanic or Latino 136 (76.4) 151 (77.8) 96 (84.2)

Hispanic or Latino 42 (23.6) 43 (22.2) 18 (15.8)
BMI (kg/m?)

Underweight (< 5th percentile) 2(11) 4(21) 7 (6.1)

Normal (5th- < 85th percentile) 95 (53.4) 108 (55.7) 69 (60.5)

Overweight (85th- < 95th percentile) 37 (20.8) 31 (16.0) 10 (8.8)

Obese (295th percentile) 44 (24.7) 51 (26.3) 28 (24.6)
Prior mRNA-based COVID-19 vaccinations

2 doses 77 (43.3) 89 (45.9) NA

3 doses 67 (37.6) 75 (38.7) NA

4 doses 33(18.5) 29 (14.9) NA

5 doses 1(0.6) 1(0.5) NA
Days since most recent prior COVID-19 vaccine

Mean (SD) 530.5 (191.21) 550.5 (192.07) -

Median (IQR) 585.5 (340.0-658.0) 593.5 (369.0-708.0) -

Range 95-835 95-1052 -
Baseline anti-N/PCR"

Positive 167 (93.8) 185 (95.4) 0

Negative 11 (6.2) 9 (4.6) 114 (100)

Characteristics are displayed as n (%), unless otherwise noted.

BMI=body mass index; IQR=interquartile range; NA=not applicable; PCR=polymerase chain reaction; SD=standard deviation.
4 The 2019nCoV-301 phase 3 study included a paediatric expansion group of adolescents aged 12 to < 18 years who received two primary series doses of NVX-CoV2373 and a

3rd dose within 5 months of the primary series.

b Participants serostatus based on anti-SARS-CoV-2 nucleocapsid protein and/or PCR status at baseline.

Table 2
Safety summary of solicited and unsolicited TEAEs in the safety analysis sets.

TEAE, n participants (%) NVX-CoV2601 Bivalent vaccine

(n=190) (n=210)
Solicited TEAEs
Any 153 (80.5) 166 (79.0)
Grade 3° 3 (1.6) 5 (2.4)
Local 136 (71.6) 140 (66.7)
Grade 3° 1(0.5) 2 (1.0)
Systemic 116 (61.1) 120 (57.1)
Grade 3° 2 (11) 3 (14)
Unsolicited TEAEs
Any 27 (14.2) 25 (11.9)
Related 3(1.6) 3(14)
Severe 3(1.6) 1(0.5)
SAEs 2 (11) 1(0.5)
Related 0 0
Any MAAE 16 (8.4) 12 (5.7)
Related” 2(11) 0
Severe 1(0.5) 1(0.5)
AESI® 0 0

AESlI=adverse event of special interest; MAAE=medically attended adverse event;
SAE=serious adverse event; TEAE=treatment-emergent adverse event.

2 There were no grade 4 or 5 solicited TEAEs.

P None of the related MAAEs were serious or severe.

¢ AESI include potentially immune-mediated medical conditions, myocarditis/
pericarditis, and adverse events relevant to COVID-19.

respectively, the majority of which were grade 1/2 (grade 3: 3 [2%]
and 5 [2%]; Table 2); there were no solicited events grade >3.
Overall, solicited TEAEs (local or systemic) had a median duration of

2 days. Any solicited local event occurred in 136/190 (72%) partici-
pants who received NVX-CoV2601 and in 140/210 (67%) participants
who received the bivalent vaccine (Fig. 2A; Table 2). Grade 3 events
occurred in £1% of participants in each group. Tenderness and pain
were the most common solicited local reactions (>5% in either
group), occurring in 112/190 (59%) and 99/190 (52%) participants in
the NVX-CoV2601 group, respectively, and in 116/210 (55%) and 96/
210 (46%) participants in the bivalent vaccine group, respectively.
There were 4/190 (2%) participants in the NVX-CoV2601 group who
collectively reported a total of six solicited local TEAEs that lasted > 7
days post vaccination (tenderness=3; pain=2; swelling=1); 1/210
(<1%) participants in the bivalent group reported a TEAE (tender-
ness) lasting > 7 days.

Any solicited systemic event occurred in 116/190 (61%) and 120/
210 (57%) participants in the NVX-CoV2601 and bivalent vaccine
groups (grade 3: 2 [1%] and 3 [1%]), respectively (Fig. 2B; Table 2).
The most common (occurring in >20% of participants in either
group) systemic TEAEs were muscle pain, headache, and fatigue. Of
190 participants in the NVX-CoV2601 group, four (2%) collectively
reported a total of six solicited systemic TEAEs that lasted >7 days
post-vaccination (joint pain=2; fatigue=1; headache=1; malaise=1;
nausea/vomiting=1). Solicited systemic reactions lasting >7 days
were reported by 3/210 (1%) participants in the bivalent group (fa-
tigue=3; headache=2; nausea/vomiting=1).

Throughout the study, unsolicited TEAEs occurred in 27/190
(14%) participants in the NVX-CoV2601 group and 25/210 (12%)
participants in the bivalent group (Table 2). Almost all unsolicited
events were considered to be unrelated to vaccination as well as
mild-to-moderate in severity; related TEAEs occurred in 3/190 (2%)
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Fig. 2. Proportion of participants with a solicited (A) local or (B) systemic reactogenicity event. The proportion of participants with a solicited treatment-emergent adverse event
in the safety analysis sets for the NVX-CoV2601 and bivalent vaccine groups are shown for (A) local and (B) systemic reactogenicity. Percentages for any-grade events are shown in

blue at the top of each bar and for grade >3 events in grey within the bars.

and 3/210 (1%) participants in the NVX-CoV2601 and bivalent vac-
cine groups, respectively. Severe events were experienced by three
participants in the NVX-CoV2601 group (psychiatric disorder, n=2;
infection/infestation, n=1) and one participant in the bivalent group
(psychiatric disorder); none were related to the respective study
vaccines. SAEs occurred in 4/190 (2%) and 1/210 (< 1%) participants
in the NVX-CoV2601 and bivalent groups, respectively; these were
each psychiatric disorders and considered unrelated to study vac-
cination. MAAEs occurred in 16/190 (8%) participants in the NVX-
CoV2601 group and in 12/210 (6%) participants in the bivalent group.
Three MAAEs related to NVX-CoV2601 (injection site induration,
pain in extremity, and urticaria) occurred among two participants;
there were no vaccine-related MAAEs in the bivalent group. No
TEAEs led to study discontinuation, and there were no AESIs (in-
cluding no PIMMCs) or myocarditis/pericarditis in either group.

Neutralising antibody GMTs (IDsg) to XBB.1.5 on day 0 were 208
in the NVX-CoV2601 group and 185 in the bivalent group (Fig. 3A;
Table S2). GMFRs (95% CI) were 12.2 (9.5-15.5) and 8.4 (6.8-10.3),
respectively, to XBB.1.5 on day 28 post-vaccination in the NVX-
CoV2601 and bivalent groups. Between-group day-28 GMTR (95% CI)
indicates a lower response with the bivalent vaccine compared to
NVX-CoV2601 (GMTR: 0.6 [95% CI 0.50-0.79]), and SRRs demon-
strated a similar trend (Table S2). Responses against ancestral SARS-
CoV-2 from day 0 to day 28 were elevated in both the NVX-CoV2601
(GMFR: 2.7 [95% CI 2.3-3.1]) and bivalent (GMFR: 2.3 [95% CI
2.0-2.7]) groups (Fig. 3A; Table S2). The GMTR (0.8 [95% CI 0.7-1.0])
and SRR difference (-4.9% [95% CI -14.4 to 4.6]) against the ancestral
virus indicated a more robust response in the NVX-CoV2601 group
compared with the bivalent group (Table S2). Responses against
XBB.1.5 were durable over time for both NVX-CoV2601 and the bi-
valent vaccine, with respective day-180 titres remaining 6.0-fold
(95% Cl 4.7-7.8) and 4.7-fold (95% CI 3.7-5.9) above baseline (GMT
[95% CI]—NVX-CoV2601: 1370 [1128.3-1662.5]; bivalent: 866
[733.5-1022.7]) (Table S2; Fig. S2).

For both strains, increases in neutralising antibodies were ob-
served in a subgroup analysis of participants who received either
two or >3 prior mRNA-based COVID-19 vaccines (Fig. 3B; Table S3).
Baseline and day-28 titres were comparable to the overall popula-
tion; however, baseline GMTs were higher in those who received >3
versus two prior vaccinations. GMFRs from baseline indicated a
more robust response in the 2-dose versus >3-dose groups for both
the ancestral and XBB.1.5 strains.

In an exploratory immunogenicity analysis, neutralising antibody
responses to the JN.1 strain were assessed in a subset of ~100 par-
ticipants in each of the two study vaccine groups. From comparable
baseline titres, GMTs increased in both the NVX-CoV2601 and bi-
valent vaccine groups (Fig. S3; Table S4). From day O to day 28, there
was a more robust cross-reactive response (GMFR [95% CI]) to JN.1
by NVX-CoV2601 (11.1 [8.3-14.8]) than the bivalent vaccine (8.9
[7.0-11.2]); SRRs at day 28 were comparable.

Anti-rS IgG responses (GMEU) to XBB.1.5 rose from 38,994 at
baseline to 150,233 at day 28 in the NVX-CoV2601 group and from
32,857 at baseline to 113,032 at day 28 in the bivalent group (Fig. S4;
Table S5). The two groups had comparable GMFRs (NVX-CoV2601:
3.9 [95% CI 3.3-4.4], bivalent: 3.4 [3.0-3.9]; Table S4). GMEU ratio
(0.8 (95% CI 0.7-0.9]) and SRR differences (-8.5% ([95% CI -18.4 to
1.6]) suggest a stronger response with NVX-CoV2601 compared with
the bivalent vaccine. Anti-rS IgG responses (GMEU) to ancestral
SARS-CoV-2 were an exploratory objective. A baseline value of
71,535 increased to 181,737 at day 28 in the NVX-CoV2601 group;
responses increased from 61,443 at baseline to 157,078 at day 28 in
the bivalent group (Fig. S4; Table S5). GMFRs and SRRs against an-
cestral SARS-CoV-2 were slightly lower than observed against
XBB.1.5 for both vaccine groups but were comparable to each other.
Responses against XBB.1.5 were durable for both NVX-CoV2601 and
the bivalent vaccine, with day-180 titres for both vaccines at 1.9-fold
(95% CI 1.7-2.2) above baseline (day-28 GMEUs [95% CI]—NVX-
CoV2601: 77,150 168,110.5-87,388.8]; bivalent: 61,648
[55,459.2-68,526.7]; Table S5). In a subgroup analysis of participants
by number of prior COVID-19 vaccinations, the highest titres were
observed on day 28 in participants with >3 pre-study vaccinations
(Fig. S4; Table S6). Within this subset, the largest increase from
baseline titre was observed against XBB.1.5 in participants with two
prior vaccinations.

As part of the exploratory objective to describe neutralising an-
tibody responses, GMTs (IDso) were assessed for the NVX-CoV2601
group compared with a representative adolescent population (aged
12 to <18 years) from the phase 3 2019nCoV-301 study (Table 1)
who received a primary series and additional dose of NVX-CoV2373.
As stated earlier, the NVX-CoV2601 group had neutralising antibody
titres increase from 208 to 2533 (baseline to day 28) against XBB.1.5
(Fig. 3A; Table S2). Compared with the NVX-CoV2601 group, the
NVX-CoV2373 comparator group had less of an increase from
baseline (GMT: 20) to day 28 (GMT: 114; GMFR: 5.6 [95% CI 4.6-6.7];



C. Bennett, G. Chau, E. Clayton et al. Journal of Infection 90 (2025) 106428

B NVX-CoV2601 (N=178)
Bl Bivalent (N=194)
GMFR: 27 (2:3-3-1
A 4 GMFR: 12-2 (9-5-155)

- GMFR: 2-3 (2:0-2-7
10000 _GMFR: 2:3 (2:0-27) GMFR: 84 (6:8-10-3)

3511

2804 2533

1322 1202
1000

100+

10+

Neutralising antibody titre,
GMT (95% Cl)

Baseline Day 28 Baseline Day 28

Ancestral XBB.1.5

B 2 Doses
m NVX-CoV2601 (n=77)
mm Bivalent (n=89)
GMFR: 28 (2:3-3'5
¢ ) GMFR: 161 (11:1-23-2)
10000~ GMFR: 30 (2:3-3-9)

GMFR: 119 (8:6-16-4)
3000 2741 2241

Neutralising antibody titre,
GMT (95% Cl)

Baseline Day 28 Baseline Day 28
Ancestral XBB.1.5

23 Doses

B NVX-CoV2601 (n=101)

mm Bivalent (n=105)

GMFR: 2:5 (2:0-3-1)
GMFR: 98 (7:1-13-6)

100001 GMFR: 1-9 (1:6-2-2)
3958

GMFR: 6-2 (4-7-8:1)
2781

1000

100+

Neutralising antibody titre,
GMT (95% Cl)

Baseline Day 28 Baseline Day 28

Ancestral XBB.1.5

Fig. 3. Pseudovirus neutralising antibody responses against ancestral and XBB.1.5 SARS-CoV-2 (A) overall and (B) by number of prior COVID-19 vaccinations. Participants were in
subgroups of two or 3 prior doses of an mRNA-based vaccine (BNT162b2 and/or mRNA-1273). GMTs of neutralising antibody responses (IDs() to the ancestral virus or XBB.1.5 are
shown on a log scale y-axis for (A) all participants and (B) whether two or 23 prior doses of an mRNA-based vaccine had been received. Corresponding GMFRs comparing baseline
and day 28 GMTs are shown above each bar. GMFR=geometric mean fold rise; GMT=geometric mean titre; IDso=inhibitory dilution at a concentration of 50%.

Fig. S5, Table S7). The GMTR calculated from adjusted GMTs (12.2 NVX-CoV2601 compared with the NVX-CoV2373 comparator (1322
[95% CI 8.5-17.4]) and the SRR difference (32.2% [95% CI 20.7-42.9]) vs 202); however, both groups produced comparable day-28 titres
between NVX-CoV2601 and the NVX-CoV2373 comparator group (3511 vs 4200; Fig. S5, Table S7). Both NVX-CoV2601 and NVX-
also reflects a more robust response to XBB.1.5 for the matched CoV2373 responded to ancestral SARS-CoV-2; however, the NVX-
vaccine. Baseline titres against the ancestral strain were higher for CoV2373 comparator group had a more robust response to its
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matched, ancestral SARS-CoV-2 strain (GMTR: 0.6 [0.44-0.71]) than
that observed for NVX-CoV2601.

Discussion

A tolerable safety profile and durable immunogenicity were de-
monstrated for NVX-CoV2601 (an XBB.1.5-directed protein vaccine)
in adolescents when given as a heterologous dose following prior
vaccination with mRNA-based (mRNA-1273 and/or BNT162b2)
COVID-19 vaccines. Robust antibody responses were observed in
both vaccine groups; however, the monovalent formulation gener-
ated higher day-28 neutralising antibody titres to the XBB.1.5
pseudovirus compared with a bivalent version of the vaccine con-
taining the rS for XBB.1.5 and ancestral SARS-CoV-2. The safety
profiles of both the monovalent and bivalent variant-specific vac-
cines were consistent with the established safety profile of the
vaccine targeting ancestral virus in adults and adolescents**® and of
NVX-CoV2601 in adults.”®

Notably, neutralising antibody titres to ancestral SARS-CoV-2
(Wuhan) had a fold increase of 2.7 from day O to day 28 in the NVX-
CoV2601 group where this increase was 2.3 in the bivalent vaccine
group, even though NVX-CoV2601 does not contain the rS to the
ancestral antigen. Neutralising antibody and anti-rS IgG responses
against XBB.1.5 by NVX-CoV2601 were also more pronounced than
those with the bivalent vaccine when analysed in participant subsets
based on the number of prior mRNA-based COVID-19 vaccines (2
prior doses: GMFR 16.1 vs 11.9, respectively; 23 prior doses: GMFR
9.8 vs 6.2, respectively). A more pronounced response with NVX-
CoV2601 versus the bivalent vaccine may reflect the effects of prior
immune imprinting to ancestral SARS-CoV-2 combined with the fact
that monovalent NVX-CoV2601 contains 5 g of a single type of rS
whereas the bivalent vaccine contains a half dose (2.5 ug) of two
different rS proteins, indicating that a full dose of rS may be pre-
ferred compared with a half dose. A similar pattern was seen with
mRNA vaccines, in which the Omicron BA.1 monovalent vaccines
elicited more robust immune responses compared with the bivalent
vaccine (ancestral virus + Omicron BA.1).°®?” This is further sup-
ported by the observed responses of a full dose of rS against a het-
erologous virus (e.g., NVX-CoV2601 against the ancestral virus and
NVX-CoV2373 against XBB.1.5) in the 2019nCoV-301 study com-
parator analysis. When assessed against a comparator group of
adolescents who received NVX-CoV2373 during the 2019nCoV-301
study, both groups had an increase in neutralising antibodies from
baseline; however, as anticipated, NVX-CoV2601 demonstrated
more robust neutralising responses against the XBB.1.5 pseudovirus.
NVX-CoV2601 produced immune responses against the ancestral
strain as well, although these were lower than those it produced
against XBB.1.5 and lower compared with responses of NVX-
CoV2373 against the ancestral strain. These results indicate some
degree of cross-neutralising activity and provide supportive evi-
dence for the adaptability of this vaccine platform to address COVID-
19 vaccine formulation updates that are recommended for align-
ment with changes in predominantly circulating variants. Although
the bivalent formulation used in this study has not been authorised
or approved for use, NVX-CoV2601 was authorised in the US, the
European Union, and the United Kingdom for the 2023-2024 season.

A limitation of the present study is that it was solely conducted in
a US population, and the majority (~70%) of participants were
White; however, there are no indications that immunogenicity to
COVID-19 vaccines varies based on race.”® Additionally, this study
was not designed to assess vaccine efficacy, nor was it powered to
make formal statistical statements on immunogenicity or to detect
rare adverse events such as myocarditis. It is important to note that
the dynamics of the pandemic were very different when participants
were enroled into the pivotal 2019nCoV-301 study (December 2020
to February 2021),” during which natural exposure was relatively
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low, compared with enrolment for the current study (September
2023), when natural infection or prior vaccination is much more
prevalent. As such, the results should be cautiously interpreted with
those caveats in mind since prior exposure and/or vaccination could
prime the immune system (as indicated in this study by the baseline
titres), making it possible to mount a more robust response to
subsequent virus exposures. Furthermore, blood samples for im-
munogenicity assessments were largely collected when XBB.1.5 and
XBB.1.16 variants were predominant. Finally, this study did not in-
clude a placebo control group; however, this study design is typical
of clinical trials investigating updated vaccines,’®?”?3% and it is
difficult to include unvaccinated controls since SARS-CoV-2 vaccines
are recommended by regulatory authorities in this age group.’’

In July 2024, the JN.1-lineage descendants KP.2 and KP.3 emerged
as the most prevalent SARS-CoV-2 strains in the US, each having
developed three additional spike gene mutations from the JN.1 se-
quence, which could potentially further increase their immune
evasion capabilities.””*> The exploratory analyses described here
demonstrated a cross-reactive response to the JN.1 strain by both the
XBB.1.5 and the bivalent vaccines. A similar cross-reactive response
was seen in adults for JN.1 and the KP.2 subvariant.”® While data
have yet to be gathered regarding the efficacy of updated JN.1-tar-
geted vaccines against substrains like KP.2 and KP.3, preliminary
preclinical data suggest strong cross-reactive immune responses. For
example, sera from individuals with COVID-19 when JN.1 was pre-
dominant (n=7; November 2023 to February 2024) effectively neu-
tralised KP.2 and other JN.1 subvariants.”> While neutralisation of
KP.3 was not investigated, preclinical data suggest no significant
difference in neutralisation resistance between KP.2 and KP.3.>* Fi-
nally, neutralisation of KP.2 (and other variants) was observed in
mice and nonhuman primates after boosting with a formulation of
the nanoparticle protein vaccine with Matrix-M™ adjuvant that
contains 1S for JN.1."°

These results provide clinical data to support that the updated
vaccine, NVX-CoV2601, containing XBB.1.5 1S is safe in adolescents
aged 12 to <18 years and provides durable immunogenicity against
more than one SARS-CoV-2 strain. These findings reinforce re-
commendations to receive updated variant-based vaccines for the
2024-2025 season.
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