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Immune checkpoint inhibitors designed to reinvigorate immune responses suppressed by cancer cells have re-
volutionized cancer therapy. Similarities in immune dysregulation between cancer and infectious diseases have
prompted investigations into the role of immune checkpoints in infectious diseases, including the therapeutic
potential of immune checkpoint blockade and drug repurposing. While most research has centered around viral
infections, data for bacterial infections are emerging. This systematic review reports on the in vivo effect of
immune checkpoint blockade on bacterial burden and selected immune responses in preclinical studies of bac-
terial infection, aiming to assess if there could be a rationale for using immunotherapy for bacterial infections. Of
the 42 analyzed studies, immune checkpoint blockade reduced the bacterial burden in 60% of studies, had no
effect in 28% and increased the bacterial burden in 12%. Findings suggest that the effect of immune checkpoint
blockade on bacterial burden is context-dependent and in part relates to the pathogen. Further preclinical research
is required to understand how the therapeutic effect of immune checkpoint blockade is mediated in different
bacterial infections, and if immune checkpoint blockade can be used as an adjuvant to conventional infection
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Introduction

Inhibitory immune checkpoints are immune regulatory proteins
expressed on the surface of immune cells and are responsible for
maintaining self-tolerance and preventing excessive activation of the
immune system.' Cancer cells can upregulate inhibitory immune
checkpoints to suppress T-cell responses and escape im-
munosurveillance.' This occurs when immune checkpoint receptors (e.g.
PD-1) expressed mainly on T-cells interact with their corresponding li-
gands (e.g. PD-L1 and PD-L2) expressed on cancer or antigen-presenting
cells." Immune checkpoint inhibitors designed to block this interaction
and restore T-cell functionality to recognize and eliminate cancer cells
has become a revolutionary approach in cancer immunotherapy, and
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today, antibody therapies targeting three immune checkpoint pathways
(PD-1/PD-L1, CTLA-4, LAG-3) have been approved by the U.S. Food and
Drug Administration for various types of cancer with hundreds of on-
going clinical trials.'~

Given the similarities in immunosuppressive features of cancer
and different infections, including upregulation of inhibitory im-
mune checkpoints on immune cells,*® research has subsequently
expanded to the infectious disease area, especially in chronic viral
infections where immune checkpoint blockade (ICB) has shown
potential in preclinical studies.® For example, administering anti-PD-
1 antibodies to simian immunodeficiency virus-infected rhesus
macaques has been associated with enhanced T-cell functions, im-
proved viral suppression and delay of viral rebound.®’ This opens
the possibility for new applications of ICB and repurposing of im-
mune checkpoint inhibitors for infectious diseases.® Identifying new
therapeutic strategies for bacterial infections in particular is essen-
tial given the global burden of antimicrobial resistance.” It is esti-
mated that the number of deaths attributable to antimicrobial
resistance will increase by ~70% from 2022 to 2050 if further actions
are not taken.” However, developing new antibiotics is challenging.
Of the 57 candidates currently in the clinical pipeline, 32 target
pathogens on the World Health Organization’s priority list, and only
12 are considered innovative.'” Therefore, there is an increased focus
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on developing alternatives to traditional antimicrobials, including
immunomodulating agents.'’

Thus far, bacterial sepsis is among the most studied bacterial infec-
tions in immune checkpoint research. Meta-analyses of preclinical sepsis
models have reported increased survival rates after ICB,'"'? however, the
effect on bacterial clearance and immune-related outcomes were in-
conclusive.'” To our best knowledge, this has yet to be systematically
reviewed for other bacterial infections. Therefore, in this systematic re-
view, we explored what is currently known about the effect of ICB on
bacterial burden as the primary outcome and immune responses (se-
lected immune cell populations, cytokines and apoptosis) as the sec-
ondary outcome in preclinical animal models of various bacterial
infections. We also assessed the quality of studies to collectively de-
termine if current evidence could provide a foundation for working to-
wards ICB as a therapeutic approach for bacterial infections.

Methods
Systematic literature search

Web of Science, PubMed and Scopus databases were searched
until July 2024 by one assessor and screened using Covidence

Table 1A
Study characteristics relating to the animal model and bacterial challenge.

Journal of Infection 90 (2025) 106391

(Covidence systematic review software, Veritas Health Innovation,
Melbourne, Australia). The search strategy outlined by the PRISMA
flow diagram in Fig. S1 and Table STA-B aimed at identifying pre-
clinical animal studies in which ICB was administered in connection
to a bacterial challenge. Only studies that reported a bacterial
burden outcome, focused on an inhibitory immune checkpoint
target, and used a blocking antibody or checkpoint-derived fusion
protein intervention were included. Data relating to the animal
model, bacterial challenge, ICB intervention, and primary and sec-
ondary outcomes were extracted by two assessors.

Bacterial burden, assessed by culture, PCR and immuno-
fluorescence methods, was the primary outcome and reported as
“reduced”, “no effect” or “increased” by ICB relative to a control.
Isotype controls were selected if studies reported both untreated and
isotype controls. Bacterial burden was assessed for the primary
organ (Table 1A) of each study, which was selected based on the
disease model and available data. If the bacterial burden in the
primary organ was measured at multiple timepoints, the study was
registered once per outcome category, irrespective of the number of
measurements. This was done to ensure that variation in measure-
ments within a study was represented while excluding repeat
measures within the same category to avoid overrepresentation. The

Reference Animal model Bacterial challenge
Reference Study Strain/breed Age Sex Disease model Inoculum Dose Route Primary
organ’
Dadelahi 2023*' 1 C57BL/6) 6-12 wk  M+F Brucellosis Brucella melitensis 1x10° CFU P Spleen
Li 2023** 1 C57BL/6 6-8wk F Pneumonia Chlamydia psittaci 5x10° IFU Intranasal  Lung
Frankhauser 2014** 1 C57BL/6 NR NR  Genital tract infection Chlamydia trachomatis 10° IFU Transcervial Uterus
Peng 2011** 1 BALB/c 6-8 wk F Genital tract infection Chlamydia muridarum 2x10* IFU Intravaginal Vagina
Ka 2015*° 1 C57BL/6 7 wk F Q fever Coxiella burnetii 106 bacteria IP Lung
Triantafyllou 2021%° 1 C57BL/6 8-12wk M  Sepsis Escherichia coli 5x107 bacteria/20 g IV Blood
Go 2021% 1 C57BL/6) 8 wk M Gastritis Helicobacter felis 2x10® CFU/ml Oral Stomach
Anderson 2006*° 1 C57BL/6 6-10wk F Gastritis Helicobacter pylori NR Gavage Stomach
Watanabe 2004%° 1 C57BL/6 6 wk F Gastritis Helicobacter pylori 5x107 CFU/ml Gl Stomach
Xu 2013°° 1 C57BL/6 NR NR  Listeriosis Listeria monocytogenes 1x10° CFU \% Spleen
Xu 2013°° 2 C57BL/6 NR NR  Listeriosis Listeria monocytogenes 1x10° CFU I\ Spleen
Pedicord 2011°" 1 C57BL/6) NR NR  Listeriosis Listeria monocytogenes 10° CFU 1\% Spleen
Rowe 2009°? 1 C57BL/6 6-8wk F Listeriosis Listeria monocytogenes 10° bacteria v Spleen
Rowe 2008>° 1 C57B6 6-8wk F Listeriosis Listeria monocytogenes 10° bacteria v Spleen
Seo 2007°* 1 C57BL/6 8-10 wk NR Listeriosis Listeria monocytogenes 3000 CFU 1\% Spleen
McCulloch 2024°° 2 C57BL/6] 8-12wk F Tuberculosis Mycobacterium tuberculosis  20-50 CFU Aerosol Lung
Qu 2024°° 1 C57BL/6 NR NR  Tuberculosis Mycobacterium tuberculosis ~ 2x10° CFU \Y% Lung
Qu 2024°° 2 C57BL/6 NR NR  Tuberculosis Mycobacterium tuberculosis ~ 2x10° CFU v Lung
Kauffman 2021%° 1 Rhesus macaque 2y M Tuberculosis Mycobacterium tuberculosis ~ 30-50 CFU BI Lung
Kamboj 2020°7 1 BALB/c 6-8 wk NR  Tuberculosis Mycobacterium tuberculosis  50-100 CFU Aerosol Lung
Jayaraman 2016°° 1 C57BL/6) 6-8 wk NR  Tuberculosis Mycobacterium tuberculosis 200 CFU Aerosol Lung
Jayaraman 2010°° 1 C57BL/6) 6-10 wk  NR  Tuberculosis Mycobacterium tuberculosis  100-200 CFU Aerosol Lung
Kirman 1999°! 1 C57BL/6 6-9 wk M Pneumonia Mycobacterium bovis BCG 5x10%-10° bacteria  Intranasal  Lung
Zhong 2024°° 1 C57BL6/J 8-10wk M  Sepsis Polymicrobial - CLP PLF
Liu 2022°! 1 C57BL/6 8-10wk M  Sepsis Polymicrobial - CLP Blood
Sun 2021%? 1 C57BL/6] 6 wk M+F  Sepsis Polymicrobial - CLP PLF
Zhao 2021%° 1 NR 8-10wk M  Sepsis Polymicrobial - CLP PLF
Lou 2020°* 1 C57BL/6 8-10wk M Sepsis Polymicrobial - CLP Blood
Deng 2018%° 1 C57BL/6] 8-10 wk  M+F Sepsis Polymicrobial - CLP Blood
Zhang 2010%° 1 C57BL/6 8-10wk M  Sepsis Polymicrobial - CLP Blood
Luo 2024°7 1 C57BL/6 6-8wk F Pneumonia Pseudomonas aeruginosa 5x10° CFU IT Lung
Zhang 2019% 1 C57BL/6) 22-28 mo M Pneumonia Pseudomonas aeruginosa 4x10® CFU/ml IT BAL
Patil 2018%° 2 BALB/c 10-12wk M  Burn infection Pseudomonas aeruginosa 1x10° CFU Topical Blood
Yang 2016° 1 C3H/HeN 6-7 wk M Far eastern spotted fever  Rickettsia heilongjiangensis ~ 1x107 CFU IP Spleen
McCulloch 2024°° 1 C57BL/6] 8-12wk F Salmonella Salmonella enterica 1x10° CFU P Spleen
Johanns 2010%* 1 129SvJxC57BL/6  6-8 wk NR  Salmonella Salmonella enterica 1x10* CFU I\% Spleen
Terasaki 2024 1 C57BL/6 8-20 wk  M+F MRSA infection Staphylococcus aureus 1x10° CFU/ml I\Y% Blood
Yang 20247 1 C57BL/6 8-12wk  M+F Osteomyelitis Staphylococcus aureus 2x10° CFU/ml Trauma Bone
Li 2023°° 1 C57BL/6 10-12wk NR  Osteomyelitis Staphylococcus aureus 1x10° CFU/ml Trauma Bone
Li 2023°° 2 C57BL/6 10-12 wk NR  Osteomyelitis Staphylococcus aureus 1x10° CFU/ml Trauma Bone
Curran 20217% 1 C57BL/6) 12 wk F Pneumonia Staphylococcus aureus 8.5x10° CFU/kg IT Lung
Patil 2018%° 1 BALB/c 10-12wk M  Burn infection Staphylococcus aureus 1x108 CFU v Lung

Abbreviations: BI: bronchoscopically instilled, CFU: colony forming units, CLP: cecal ligation and puncture, IFU: inclusion forming units, IP: intraperitoneal, IT: intratracheal, IV:
intravenous, Gl: gastric intubation, MRSA: methicillin-resistant Staphylococcus aureus, NR: not reported, PLF: peritoneal lavage fluid.

2 Used when reporting the bacterial burden outcome.
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log change in bacterial burden between intervention and control
groups was estimated by extracting central tendency values from
graphs using PlotDigitalizer v3 (https://plotdigitizer.com/)."”

Secondary outcomes were immune checkpoint expression after
bacterial challenge, immune cell populations (CD4"T-cells and CD8'T-
cells), cytokines (pro- and anti-inflammatory) and apoptosis. These were
the most reported outcomes across studies. Immune checkpoint ex-
pression after bacterial challenge was limited to the immune checkpoint
targeted by the intervention. Immune outcomes were also reported as
“reduced”, “no effect” or “increased” by ICB relative to a control. Immune
outcomes were assessed using multiplex immunoassays, flow cyto-
metry, ELISA, PCR, histological, colorimetric and automated blood
counting methods. Only immune outcomes assessed directly on cells/
tissue from the animals were included, and measurements from ex vivo/
in vitro stimulated cells were therefore excluded. Measurements on all
tissues/cells were included for immune outcomes. If the immune out-
come was measured at multiple timepoints or in multiple tissues/cells,
the study was registered once per outcome category, irrespective of the
number of measurements. Cytokines were grouped as pro- or anti-in-
flammatory according to Turner et al."* and assessed collectively in each
study. Data for secondary outcomes were only extracted if there was a
statistical comparison between the intervention and control group. The
present review is descriptive, and data are presented as number or
percentage of studies or as log differences, and graphs were created
using GraphPad Prism version 10.3.1 (GraphPad Software, Massachu-
setts, USA).

Bias assessment

Bias was evaluated independently by two assessors using a
modified version of SYRCLE's risk of bias tool for animal studies,'>"'®
which was adapted to fit this research field. Modifications included
appropriate baseline characteristics (strain/breed, age/weight, sex),
assessment of bias according to the primary outcome, addition of
antibiotic co-administration as a domain, and changes to some an-
swer categories (Table S2). Consensus between assessors was
reached by discussion.'®

Results
Study characteristics

The systematic search identified 2155 articles, of which 37 arti-
cles met the inclusion criteria and comprised 42 individual studies.
Most of these articles have been published within the last decade
(Fig. S2). Tables 1A and 1B summarize data relating to the animal
model, bacterial challenge and ICB intervention. Of the 42 studies, 41
were performed in mice and 1 in monkeys. Animals were inoculated
with 16 different bacterial strains belonging to 11 genera, i.e. Brucella
(2% of studies), Chlamydia (7%), Coxiella (2%), Escherichia (2%), Heli-
cobacter (7%), Listeria (14%), Mycobacterium (19%), Pseudomonas (7%),
Rickettsia (2%), Salmonella (5%), Staphylococcus (14%), or were sub-
jected to cecal ligation and puncture resulting in a polymicrobial
infection (17%). Immune checkpoint targets included CTLA-4 (14%),
LAG-3 (2%), PD-1 (19%), PD-L1 (42%), TIGIT (9%), and TIM-3 (14%). In
39 studies, antibodies were used to block the immune checkpoint
pathway, while three studies used a checkpoint-derived fusion
protein. The intervention was administered prophylactically in 54%
of studies and as a treatment in 46% of studies. Isotype antibody, IgG
or Fab controls were used in all but three studies, that used un-
treated or PBS controls.

Immune checkpoint expression after bacterial challenge

Fifteen studies reported the expression of immune checkpoints
after bacterial challenge. Compared to uninfected controls, immune
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checkpoint expression was upregulated in at least one tissue/cell
population after bacterial challenge in all studies. In seven studies
(17%), immune checkpoints were upregulated in all reported cells/
tissues, whereas the expression was tissue/cell or time-dependent in
eight studies (19%). Immune checkpoint expression was either in-
sufficiently reported (no comparison to an uninfected control group
or no statistics) or not reported at all in 27 studies (64%) (Fig. 1A).

Bacterial burden

No studies reported complete bacterial eradication, although
some showed significant reductions in bacterial burden following
ICB. The log reduction in bacterial burden ranged from 0.1 to 3.2
(Fig. 1B). Overall, ICB reduced the bacterial burden in 60% of studies,
whereas it had no effect in 28% and increased the bacterial burden in
12% of studies (Fig. 1C). At a genus level, polymicrobial infection,
Pseudomonas and Escherichia had the best outcomes, whereas Bru-
cella, Coxiella, Listeria and Rickettsia had the worst (Fig. 1D). Results
were similar between immune checkpoint targets apart from CTLA-
4, which had the least effect on bacterial burden (Fig. 1E). A higher
percentage of studies reported reduced bacterial burden when ad-
ministering the intervention as a treatment (85%) than prophy-
lactically (41%) (Fig. 1F).

Immune parameters

The effect of ICB on selected immune outcomes (CD4 T-cell and
CD8'T-cell populations, pro- and anti-inflammatory cytokines or
apoptosis) was reported in 24 studies. CD4'T-cells and CD8*T-cells
were increased by ICB in 44% and 31% of studies, respectively, while
31% of studies reported a reduction in CD8*T-cells by ICB. Studies
assessed seven pro-inflammatory (IL-1p, IL-1«, IL-6, IL-17/A, 1L-18,
IFN-y, TNF/-a) and three anti-inflammatory (IL-10, IL-12/p40/p70, IL-
22) cytokines.'* The changes in pro- and anti-inflammatory cyto-
kines after ICB were similar, with the proportion of studies reporting
an increase, no effect and reduction of pro-inflammatory cytokines
being 38%, 44%, and 19%, respectively, while this was 44%, 33% and
22% for anti-inflammatory cytokines. ICB reduced apoptosis in 63%
of studies (Fig. 2). A detailed description of these immune outcomes
for each study is listed in Table S3-5.

Study quality

Relevant baseline characteristics were reported in 70% of studies.
In 22% of studies, randomization of the intervention was reported,
but only three studies described the timing, and none described
methodological details of randomization. Randomized housing was
not reported in any studies. Blinding was only performed in two
studies. While 81% of studies reported n-values for the primary
outcome, it was unclear if the dataset was complete in 46% of cases,
and no studies reported a sample size calculation. In eight studies,
the intervention was administered alongside antibiotics, which
could have influenced the outcomes (Fig. 3). Studies not adminis-
tering antibiotics were therefore reported as having sufficient
methodology in Fig. 3.

Discussion

In this review, analyzing 42 preclinical animal studies of bacterial
infections, ICB reduced the bacterial burden in 60% of studies, while
28% showed no effect and 12% increased the bacterial burden. The
most promising results were seen for polymicrobial infections,
Pseudomonas and Escherichia. On the contrary, for some pathogens
that can cause intracellular infections like Brucella, Coxiella, Listeria
and Rickettsia, ICB had no effect or even increased the bacterial
burden. Intracellular pathogens may have developed pathogen-
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Table 1B
Study characteristics relating to the immune checkpoint intervention.
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Reference Immune checkpoint blockade Co-administration
Reference Study Target Dose® Route Indication Time relative to inoculation” Control
Pedicord 2011°" 1 CTLA-4 200 pg P Prophylactic 2 h pre-ino Isotype AB -
Johanns 2010%® 1 CTLA-4 500 pg (+250 pg) IP Treatment 5, 8 d or 37, 40 d post-ino Isotype AB -
Rowe 2009°° 1 CTLA-4 500 pg (+250 pg) IP Prophylactic 1 d pre-ino + 4, 8 d post-ino Isotype AB -
Anderson 2006% 1 CTLA-4¢ 200 pg P Prophylactic 1 d pre-ino + q2d Fab control -
Watanabe 2004*° 1 CTLA-4 100 pg P Prophylactic 1 d pre-ino + q1d for 7 d IgG control -
Kirman 1999°! 1 CTLA-4 1 mg IP Prophylactic With ino + qlw Untreated -
Lou 2020%* 1 LAG-3 50 pg P Treatment 3 h post-ino Isotype AB  Imipenem
Qu 2024°° 1 PD-1 250 pg P Treatment 3, 10, 17 d post-ino Isotype AB -
Dadelahi 2023"' 1 PD-1 250 pg P Prophylactic 1 d pre-ino + q3d Isotype AB -
Li 2023°° 1 PD-1 200 pg P Treatment 5 d post-ino + q3d Isotype AB  Gentamicin
Kauffman 2021%° 1 PD-1 10 mg/kg v Treatment  2,4,6,8,10,13 wk post-ino Isotype AB -
Triantafyllou 2021%° 1 PD-1 200 pg P Prophylactic 1 d pre-ino Isotype AB -
Kamboj 2020°7 1 PD-1 200 pg/kg P Treatment  g4-5d post-ino (3 times) Isotype AB  Rifampicin
Zhang 2019% 1 PD-1 200 pg \% Prophylactic With ino Isotype AB  Gentamicin
Xu 2013°° 1 PD-1 200 pg P Prophylactic 1 d pre-ino + q2d IgG control -
Luo 2024°7 1 PD-L1 200 pg IP Prophylactic 1 d pre-ino Untreated -
Terasaki 2024 1 PD-L1 200 pg I\ Prophylactic With ino Isotype AB -
Qu 2024°° 2 PD-L1 250 g P Treatment 3, 10, 17 d post-ino Isotype AB -
Yang 20247 1 PD-L1 200 pg P Treatment 1 d post-ino + q2d for 2 wk Isotype AB  Gentamicin
Li 2023°° 2 PD-L1 200 pg P Treatment 5 d post-ino + q3d Isotype AB  Gentamicin
Curran 20217° 1 PD-L1 300 pg P Prophylactic With ino + 1 d post-ino Isotype AB -
Go 202147 1 PD-L1 300 pg P NR q3d? Isotype AB -
Zhao 2021%° 1 PD-L1 2.5 mg/kg I\ Treatment 3 h post-ino Isotype AB -
Deng 2018%° 1 PD-L1 20 mg/kg NR Treatment 3, 24, 48 h post-ino IgG control -
Patil 2018%° 1 PD-L1 200 pg P Prophylactic 1 d pre-ino Isotype AB -
Patil 2018%° 2 PD-L1 50 pg P Prophylactic 1 d pre-ino Isotype AB -
Ka 2015%° 1 PD-L1 200 pg NR Prophylactic 1 d pre-ino Isotype AB -
Frankhauser 2014 1 PD-L1 200 pg NR Prophylactic 1,2,3 d pre-ino + q2d post-ino Isotype AB -
Xu 2013°° 2 PD-L1 200 pg P Prophylactic 1 d pre-ino + q2d IgG control -
Peng 2011* 1 PD-L1+TIM-3 200 pg +100 pg P Prophylactic With ino + 2, 4 d post-ino (TIM-3) Isotype AB -

With ino + 3,6,9,12 d post-ino (PD-L1)
Zhang 2010°° 1 PD-L1 50 pg P Treatment 3 h post-ino Isotype AB -
Rowe 2008 1 PD-L1 500 pg (+250 pg) IP Prophylactic 1 d pre-ino + 4, 8 d post-ino Isotype AB -
Seo 2007°* 1 PD-L1 200 pg P Prophylactic 1 d pre-ino® Isotype AB -
Li 2023%* 1 TIM-3 100 pg P Treatment 2, 4, 6, 8, 10 d post-ino Isotype AB -
Liu 2022°! 1 TIM-3 50 pg v Treatment 30 min post-ino Isotype AB  Imipenem
Jayaraman 2016°% 1 TIM-3 500 pg (+100 pug) IP Treatment 10 wk post-ino + q3d for 2 wk Isotype AB -
Yang 20167° 1 TIM-3¢ 200 pg P Prophylactic 12 h pre-ino Ig control -
Jayaraman 2010°° 1 TIM-3¢ 0.5 mg (+0.1 mg) IP Treatment  1,5,8,12 d post-ino IgG control -
McCulloch 2024°° 1 TIGIT' 200 pg P Treatment 1 d post-ino + q3d Isotype AB -
McCulloch 2024°° 2 TIGIT' 200 pg P Treatment  Twice weekly from 2 wk post-ino Isotype AB -
Zhong 2024°° 1 TIGIT 400 pg P Prophylactic 1 d pre-ino PBS -
Sun 2021% 1 TIGIT 400 pg P Treatment 12 h and 24 h post-ino Isotype AB  Ceftriaxone and

Metronidazole

Abbreviations: AB: antibody, CTLA-4: cytotoxic T lymphocyte-associated protein 4, Fab: fragment antigen-binding region, IP: intraperitoneal, IV: intravenous, LAG-3: lymphocyte
activation gene 3, NR: not reported, PBS: phosphate-buffered saline, PD-1: programmed cell death 1, PD-L1: programmed death ligand 1, TIGIT: T cell immunoreceptor with Ig and

ITIM domains, TIM-3: T cell immunoglobulin and mucin domain 3.
2 Numbers in brackets indicate follow-up doses.
b Pre-, with or post-inoculation, q3d = every 3 days.
¢ Uses a checkpoint-derived fusion protein instead of an antibody intervention.

4 Unclear when the intervention was first administered.
e

f WT antibody was assessed.

specific virulence factors or mechanisms to evade the immune
system and survive within host cells that may not be targeted by ICB,
which could render enhanced T-cell responses insufficient and in
part explain the lack of effect.!”'® Notably, some of these pathogens
were only reported by few studies and findings thus need to be
confirmed. This data suggest that the efficacy of ICB in part depends
on the pathogen, which is similar to what has been reported for
cancer ICB therapy, where the response rate varies significantly be-
tween different cancers.'®

Blocking inhibitory immune checkpoint pathways can reinvigorate
proliferation and effector functions of T-cells.”° Here, expansion of CD4*
and CD8'T-cell populations was reported in less than half of the studies.
Surprisingly, 25-56% of studies reported no effect across the selected
immune outcomes. This could relate to antibody affinity, expression
level of the targeted immune checkpoint or measurements in off-target

For immune-related outcomes, the intervention was given 1 d pre ino + 2 d post ino.

tissues/cells.”’ Immune checkpoints are also found on innate immune
cells like macrophages, dendritic cells and NK-cells.”° Recent literature
suggests that blocking some classic immune checkpoint pathways as
well as phagocytosis checkpoint pathways, like SIRPa/CD47, can directly
or indirectly modulate the innate immune response, which is also im-
portant for combatting bacterial infections, and should be explored
further.’°?>?*> The heterogenicity of studies prevented further compar-
isons of immune cells in this review.

While preclinical data for certain pathogens are encouraging, the
progression of ICB therapy for bacterial infections is challenged by fun-
damental outstanding questions. First, the identification of key immune
checkpoints in different pathologies and why ICB treatment responses
vary remains to be determined.”** For example, among Listeria mono-
cytogenes studies, PD-1, but not PD-L1 or CTLA4 blockade, was able to
reduce the bacterial burden despite similarities in study design. Such
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Fig. 1. Immune checkpoint expression and bacterial burden outcomes. Immune checkpoint expression after bacterial challenge compared to uninfected controls (A). Log change
in bacterial burden between intervention and control groups (B). Effect of immune checkpoint blockade on bacterial burden in the primary organ across all studies (C), according
to bacterial genus (D), according to immune checkpoint target (E) and according to indication (F) compared to controls. In (A), upregulated refers to upregulation of the immune
checkpoint in at least one reported tissue or cell population, and insufficient refers to lack of statistics or an uninfected control group. In (B) colored dots refer to the central
tendency values used. Seven studies did not specify the central tendency value. Numbers above the graphs indicate the number of studies that the data originates from.

subgroup explorations for other bacterial infections are currently limited
by heterogenicity in study design or a low number of studies but are
important for understanding context-dependent effects of ICB on bac-
terial burden. Additionally, some studies report large inter-animal
variability in the response to ICB, with non-responders that are com-
parable to controls,>>*° despite the ability to control for many variables
in animal experiments, including the use of inbred mouse strains.

Second, understanding which stage of infection to intervene with ICB is
important.”” Here, we report that a higher proportion of studies were
associated with reduced bacterial burden when ICB was administered as
a treatment than prophylactically. The effect may also differ over the
course of infection, as demonstrated for Salmonella enterica, where CTLA-
4 blockade was effective in reducing the bacterial burden in the acute,
but not chronic stage of infection.’® Third, the translatability of
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Fig. 2. Immune-related outcomes. Effect of immune checkpoint blockade on CD4*T-
cell and CD8'T-cell populations, pro- and anti-inflammatory cytokines and apoptosis
compared to controls. Both general and antigen-specific CD4* and CD8" T-cell po-
pulations are reported. Numbers above the graph indicate the number of studies that
the data originates from.

preclinical animal studies in this field remains unclear. Most studies
were performed in mice. Dawson, et al. reported a similarity in immune-
related proteins between mice and humans of 73%, which is significantly
lower than other experimental animals like pigs,>® and elements of the
immune response to bacterial infections in mice are different to humans.
For example, circulating immune cells are dominated by lymphocytes in
mice and neutrophils in humans, and some chemokines involved in host
defenses in humans, such as IL-8, have not been identified in mice.'*?%*°
Additionally, variation in susceptibility and immune responses to bac-
terial infections have been demonstrated between mouse strains.**
Although the molecular structure of mouse PD-L1 is similar to that of
humans, and can form a functional immune checkpoint with human PD-
1, it is unclear how well ICB of PD-L1 in mice is predictive of outcomes in
humans.>® This relates to observed differences in druggability between
human and mouse PD-L1 for anti-human antibodies, peptides and small
molecules.”® Here, only one of five PD-L1 targeted molecules was able to
block the mouse PD-L1/human PD-1 interaction but all five blocked the
human PD-L1/human PD-1 interaction in an in vitro cell assay.>> Such
inter-species comparisons are lacking for several other immune check-
point molecules. These factors may affect the translation of im-
munotherapies from mouse models to humans. Fourth, few studies
reported co-administration of ICB and antibiotics. In cancer patients,
antibiotic administration has been negatively correlated to the efficacy
of ICB therapy.”* Therefore, studies addressing the efficacy and
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compatibility of ICB and antibiotics in bacterial infections are needed.*'”
Fifth, safety of ICB is a concern. As most infections are associated with
inflammation, ICB may exacerbate this inflammatory response, and lead
to immune-related adverse events.”’ Furthermore, it is noteworthy that
some studies report an increase in bacterial burden following ICB. This is
a relevant perspective not only for the therapeutic potential and safety of
ICB in bacterial infections but also for cancer patients who are under-
going ICB therapy. It has been suggested that infections following ICB
therapy in cancer patients may be a result of hyperinflammation in-
duced by ICB that disrupts the balance between pathogen control and
avoidance of immunopathology, favoring bacterial growth.>> Ad-
ditionally, it has been suggested that immune checkpoint pathways may
be necessary to establish latent infections like Mycobacterium tubercu-
losis, and that ICB thus can cause re-activation of the infection.> ICB may
also enhance T-cell mediated lysis of infected cells, which could promote
bacterial dissemination.*® Sixth, included studies display heterogenicity
in terms of study design, animal models and bacterial strains which can
influence the comparability of results and highlights the need for gen-
erating more standardized protocols in future research. Finally, most
studies did not report methods used to reduce potential bias and may be
underpowered. This is important as results from preclinical studies may
be used as a basis for clinical studies.'” The ARRIVE guidelines for re-
porting animal research address bias, and compliance with these
guidelines is now a requirement for many scientific journals and will
hopefully improve the quality and reproducibility of future studies in
this field.””

Conclusion and future perspectives

In conclusion, 42 preclinical animal studies have investigated the
effect of ICB on bacterial burden across different bacterial infections.
In 60% of the studies, ICB successfully reduced the bacterial burden
in a context-dependent manner that in part relates to the pathogen.
Ongoing preclinical research is essential to understand how the
therapeutic effect of ICB in bacterial infections may relate to dif-
ferent pathogens, immune checkpoint targets and timing of treat-
ment initiation. Furthermore, to determine if ICB could be used as an
adjuvant to conventional infection management strategies. To im-
prove the translatability of such research, animal models with higher
immune system homology to humans and in which the structure,
function and druggability of immune checkpoints resemble that of
humans should ideally be used. Additionally, analyses of tissue
biopsies from patients with both acute and chronic infections would
be beneficial for identifying relevant immune checkpoint targets
across different bacterial infections. This might also clarify if a more
personalized approach, as seen in oncology, should be considered.
Finally, preclinical studies should include strategies to mitigate bias.

Random sequence generation I = —  Yes, sufficient methodology
Baseline characteristics described Yes, insufficient or unclear methodology
Correct timing of randomization | === No or not reported

Allocation concealment|
Random housing
Blinding of intervention

Not possible or not relevant

Random outcome assessment| I
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Fig. 3. Bias assessment. Bias assessment of 37 articles, comprising 42 studies, on immune checkpoint blockade in preclinical animal models of bacterial infection using a modified

version of SYRCLE's risk of bias tool for animal studies.
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Clinical translation

The findings of this review have seen only limited clinical
translation which underscores the field’s novelty. However, to suc-
ceed, future clinical studies must rely on a stronger preclinical
foundation than identified by this review. Just three clinical trials of
ICB in bacterial infections have been conducted so far focusing on
the safety, pharmacokinetics and pharmacodynamics of anti-PD-1
and anti-PD-L1 therapy in patients with sepsis-induced im-
munosuppression. One study was a phase 1b randomized, double-
blind, placebo-controlled, ascending-dose study of anti-PD-L1
therapy (BMS-936559) involving 24 participants. This study found
that ICB was well tolerated at drug doses of 10-900 mg, did not
induce hypercytokinemia, and was associated with increased
monocytic human leukocyte antigen-DR expression at higher doses
indicating improved immune function.*® The mortality rate in this
study was 25% and 4 participants experienced serious adverse
events, none of which were considered drug related.’® Another
phase 1b randomized, double-blind study of anti-PD-1 therapy
(Nivolumab) in 31 participants reported a mortality rate of 39%
across both tested doses (480 mg and 960 mg), and 5 participants
experienced adverse events that were possibly drug related. The
authors concluded that the safety findings were consistent with the
current drug label, and there was no indication of hypercytoki-
nemia.’® Finally, an open-label phase 1/2 study of anti-PD-1 therapy
(Nivolumab) in 13 participants reported good tolerability and safety
at doses of 480 mg and 960 mg. Here, the mortality rate was 31%, and
one participant developed drug-related adverse events.*’ Both stu-
dies involving Nivolumab demonstrated an increase in monocytic
human leukocyte antigen-DR expression over time, however, the
findings were limited by the absence of a placebo group. Studies
aimed at investigating the clinical efficacy of ICB for bacterial in-
fections are lacking. However, the overall findings of this review
indicate that ICB has therapeutic potential for certain types of bac-
terial infections, which warrants further investigation.
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