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Highlights
Genetic surveillance to detect mecha-
nisms of insecticide resistance in popula-
tions of malaria-transmitting mosquitoes
can guide the deployment of new insecti-
cidal vector-control tools that have multi-
ple modes of action within the mosquito.

Novel resistance-associated genetic
variants continue to be identified in
Africa’s major malaria vector species.
We develop a catalogue of genetic
variants that could be routinely
screened in surveillance.
Insecticide resistance inmalaria vector populations poses amajor threat tomalaria
control, which relies largely on insecticidal interventions. Contemporary vector-
control strategies focus on combatting resistance using multiple insecticides
with differingmodes of action within themosquito. However, diverse genetic resis-
tance mechanisms are present in vector populations, and continue to evolve.
Knowledge of the spatial distribution of these genetic mechanisms, and how
they impact the efficacy of different insecticidal products, is critical to inform inter-
vention deployment decisions. We developed a catalogue of genetic-resistance
mechanisms in African malaria vectors that could guide molecular surveillance.
We highlight situations where intervention deployment has led to resistance evolu-
tion and spread, and identify challenges in understanding andmitigating the epide-
miological impacts of resistance.
Genetic surveillance can detect rises
and spatial spread of resistance fol-
lowing deployment of new insecticidal
interventions.

The utility of genetic surveillance in
operational malaria control depends
on a better understanding of links be-
tween resistance genetics, pheno-
types, and the efficacy of insecticidal
interventions in malaria control. We
present evidence demonstrating these
relationships, together with sources of
current uncertainty.

1Department of Infectious Disease
Epidemiology, Imperial College London,
London, UK
2Centre for Global Health Research,
Kenya Medical Research Institute,
Kisumu, Kenya
3Vector Group, Liverpool School of
Tropical Medicine, Pembroke Place,
Liverpool, UK
4Department of Environmental and
Occupational Health, School of Public
Health, University of Nevada, Las Vegas,
USA
5Parasitology and Vector Biology
(PARAVEC) Laboratory, School of Public
Health, University of Nevada, Las Vegas,
USA
The need for geospatial information on genetic mechanisms of insecticide
resistance
Control of mosquito vectors of malaria using interventions based on chemical insecticides, including
insecticide-treated nets (ITNs) and indoor residual spraying (IRS), is critical in suppressing malaria
transmission [1]. The development of insecticide resistance (IR) (see Glossary) in mosquito vector
populations threatens to erode the recent successes achieved by these interventions in combatting
malaria [2,3]. Resistance to pyrethroids, the class of insecticides most commonly used in vector
control, has spread widely throughout populations of major malaria vector species in sub-Saharan
Africa since the 1990s [4], including species from the Anopheles (An.) gambiae complex [5] and
theAn. funestus group [6,7]. In several regions, standard pyrethroid-only ITNs now fail to significantly
increase mosquito mortality [8–10], and they show lower protection against clinical malaria than
newer types of ITNs design to counteract pyrethroid resistance [11–14].

IR inAnopheles populations has evolved through a diverse array of underlying geneticmechanisms
[15–23] which vary across different classes and types of insecticides [20,24]. Developments in ITN
and IRS technology now focus on counteracting multiple different mechanisms of resistance using
combinations of partner compounds which have distinct modes of action in the mosquito, to
improve toxicity and mitigate selection for IR [25]. Next-generation ITNs, also known as ‘new
nets’, incorporate two compounds, a pyrethroid insecticide combined with either the synergist
piperonyl butoxide (PBO) [12,26], or an insecticide which is either pyriproxyfen [27], or the pyrrole
chlorfenapyr [28]. These additional compounds vary in their impact on mosquitoes; PBO inhibits
the production of enzymes which metabolise pyrethroid insecticides, while pyriproxyfen disrupts
mosquito growth and fertility, and chlorfenapyr inhibits mosquito respiration. A wider range
of insecticides are available for use in IRS [3]. Newer IRS insecticide products include the
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neonicotinoid clothianidin [29,30] and the novel insecticide broflanilide [31], both of which offer
different modes of action compared to other vector-control insecticides. The global plan of the
World Health Organisation (WHO) for IR management (IRM) recommends rotating the insecticide
classes used in IRS to avoid sustained exposure to a single mode of insecticidal action [25,32],
although recent modelling studies suggest that simultaneously applying these multiple insecticides
may be a more effective strategy [33].

The design of interventions tomitigate the impacts and spread of resistance needs to be informed
by location-specific information about the levels of phenotypic IR in the vector species present,
together with the underlying genetic mechanisms. An understanding of how these local resis-
tance profiles affect the efficacy of different vector-control products in combatting malaria is
also required to identify regions where particular interventions will be most beneficial (Figure 1).
This necessitates the development of quantitative relationships between resistance genetics
and phenotypes, vector-control efficacy, and the consequent capacity of insecticide-based
interventions to reduce malaria across different epidemiological and environmental settings.
These analyses need to be geospatial and location-specific, considering local malaria endemicity,
characteristics of the human population and their access to vector control products, as well as
vaccines, prophylaxis, and treatment, and ecological factors such as seasonality and vector
species composition. Many of these variables are incorporated into the range of mathematical
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Figure 1. Schematic diagram showing an example of links between the geographic distribution of insecticide
resistance (IR) profiles and vector control efficacy. The top three maps show data from predictive maps for the year
2017, including the prevalence of Plasmodium falciparum malaria in children aged 2–10 years [35] (top map), ITN usage
[117] (second from top), the prevalence of phenotypic resistance to deltamethrin in Anopheles gambiae complex
populations [5] (third from top). The bottom map is depicted in grey to illustrate the lack of broadscale data on the
frequencies of genetic mechanisms of IR.
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Glossary
Copy number variant (CNV): a
genomic variant whereby a sequence of
nucleotides is repeated in tandem
multiple times in an individual’s genome.
Cross-resistance: resistance to one
insecticide by a mechanism that also
confers resistance to another insecticide,
even when the insect population has not
been selected by exposure to the latter.
Diagnostic dose: the amount of
insecticide active ingredient that
mosquitoes are expected to absorb
while being exposed to a discriminating
concentration of an insecticide for a fixed
period, and which reliably kills all
susceptible mosquitoes.
Discriminating concentration: the
concentration of an insecticide that,
when mosquitoes are exposed to it for a
standard period, reliably kills all
susceptible mosquitoes.
Genetic surveillance: widespread
screening of wild mosquito populations
for genetic variants associated with IR,
using a suite of conventional molecular
assays.
Genome-wide association study
(GWAS): an observational study used
to identify genomic variants that are
statistically associated with a particular
trait.
Insecticide resistance (IR): a
heritable change in the sensitivity of an
insect population which may lead to
survival following exposure to a standard
dose of insecticide. This may be the
result of physiological or behavioural
adaptation.
Phenotypic resistance: development
of an ability in a subpopulation of insects
to tolerate doses of insecticides that
would prove lethal to most insects in a
susceptible population of the same
species.
Resistance intensity: the strength of
IR in mosquitoes, resulting from the level
of expression of resistance phenotype(s).
Susceptible population: a mosquito
population is susceptible to an
insecticide when 98% or more of the
population die after being exposed to a
discriminating concentration of the
insecticide.
Whole-genome sequencing (WGS):
the process of elucidating the entire DNA
sequence of an organism’s genome.
and statistical models that predict malaria transmission and prevalence as well as intervention
efficacy across a range of African settings [3,34,35].

At present, however, comprehensive, contemporary surveillance data on IR is lacking for many
African regions. Operational decisions about public health management in sub-Saharan Africa
are made at the level of administrative health districts [32]. Resistance phenotypes in mosquito
populations are most commonly monitored by standard susceptibility tests [25]; however, the
spatial coverage of available data is relatively sparse, with 89% of malaria-endemic administrative
districts having no recorded measurements in the period 2015–2017 [5,32]. Data describing
genetic resistancemechanisms is sparser still, even for frequencies of pyrethroid target-site resis-
tance, the most widely monitored genetic mechanism. A recent study determined that only nine
African countries had sufficient records of the frequencies of pyrethroid target-site resistance in
An. gambiae complex populations to support geostatistical analyses of geographic variation in
resistance frequencies [36].

Encouragingly, capacity for widespread geospatial surveillance of genetic mechanisms of IR is
currently expanding. Recent developments in whole-genome sequencing (WGS) [37,38] have
led to rapid growth in genomic datasets from mosquito samples collected throughout malaria
endemic countries, while new open resources allow these data to be accessed and analysed by
non-specialist users (https://www.sanger.ac.uk/tool/ag1000g/). Genomic analyses have identified
new genetic drivers of resistance [19,23,38,39] and given insight into resistance evolution and spread
[19,40,41]. WGS is, however, too intensive, and expensive for routine surveillance of vector popula-
tions with adequate coverage across administrative districts. For the purposes of high-throughput
genetic screening, targeted amplicon-sequencing panels for genotyping a subset of predictive
geneticmarkers of IR [24,42,43], vector species identification [44], andPlasmodium falciparum infec-
tion [44] are being developed and may represent a feasible tool for expanding field monitoring when
combined with advances in low-cost, portable sequencing platforms such as Oxford Nanopore
Technology.Moreover, new initiatives to increase the scalability and sustainability of genomic surveil-
lance of vector populations recognise the need to operationalise these resources to contribute to
strategic planning by national malaria-control programmes. Here we review current knowledge of
the different genetic mechanisms that underly IR in Africa’s major malaria vector species, including
species from the An. gambiae complex and the An. funestus subgroup, to inform genetic surveil-
lance of resistance and guide intervention deployment decision-making.

Genetic resistance mechanisms in An. gambiae complex vector species
The diverse array of genetic IR mechanisms in mosquitoes from the An. gambiae complex
are typically categorized as either target-site, metabolic, cuticular, or behavioural resistance,
with additional categories relating to mechanisms of insecticide sequestration and removal
[17]. Here we review evidence of the genetic basis for these mechanisms with the aim of sum-
marizing the known genetic variants that could be screened as part of molecular surveillance
programmes, addressing current data gaps (illustrated in Figure 1A). For each resistance
mechanism, the SNP mutations showing associations with resistance are summarized in
Table 1.

Target-site resistance
The insecticides that are currently recommended by the WHO to control adult malaria vectors
fall within seven classes: carbamates, organochlorines, organophosphates, neonicotinoids,
pyrethroids, pyrroles, and insect growth regulator antagonists. The insecticide types used in
IRS span all these classes except for pyrrole and growth regulator insecticides and includes
the novel meta-diamide broflanilide. For ITNs, only pyrethroids, or a combination of pyrethroid
606 Trends in Parasitology, July 2024, Vol. 40, No. 7
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Table 1. Genetic markers that show associations with IR phenotypes in the An. gambiae complex

Mechanism Susceptible allele Resistance alleles Insecticide types Refs

Target site

Voltage-gated sodium channel Vgsc-402V Vgsc-402L Type I and II pyrethroids, DDT [19,63]

Voltage-gated sodium channel Vgsc-995L Vgsc-995F, Vgsc-995S, Type I and II pyrethroids, DDT [55,56,61]

Voltage-gated sodium channel Vgsc-1570N Vgsc-1570Y Type I and II pyrethroids, DDT [62]

Voltage-gated sodium channel Vgsc-1527I Vgsc-1527T Deltamethrin, Permethrin [38]

Gaba receptor Rdl-296C Rdl-296G, Rdl-296S Organochlorines [48]

Acetylcholinesterase insensitivity Ace1-280G Ace1-280S Carbamates, Organophosphates [38,64–66,
70,115]

Metabolic

Glutathione S-transferase overexpression Gste2-114I Gste2-114T DDT [24,69]

Glutathione S-transferase overexpression Gste2-119L Gste2-119V Permethrin [24]

Cytochrome P450 overexpression Cyp4j5-43L Cyp4j5-43F Permethrin, Deltamethrin [38,67]

Carboxylesterase overexpression Coeae1d-T Coeae1d-C Permethrin [67]

Cytochrome P450 overexpression Cyp6p4—236M-Cyp6aap Cyp6p4-236M-TE-Cyp6aap-Dup1 Deltamethrin [39]
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and either the synergist PBO, the pyrrole chlorfenapyr, or the insect growth regulator piriproxyfen,
are incorporated into the set of ITN products that have attainedWHOpre-qualification status. The
physiological target of the insecticide within the mosquito varies across these different insecticide
types and classes, and therefore the genetic basis of target-site resistance also differs. Except for
pyrrole insecticides and insect growth regulator antagonists, all other vector-control insecticides
are neurotoxic. Dichlorodiphenyltrichloroethane (DDT) and pyrethroid insecticides target the
voltage-gated sodium channel (Vgsc) [45], and the organochlorine dieldrin and meta-diamide
broflanilide target the Gaba receptor, a chloride channel [46–48]. Organophosphate and carba-
mate insecticides inhibit acetylcholinesterase (AChE), an enzyme that is essential to the control
of neuronal signalling [49,50]. The neonicotinoid clothianidin overstimulates and blocks nicotinic
acetylcholine receptors (nAChR), leading to paralysis and death [30]. The pyrrole chlorfenapyr uti-
lises a different mode of action, interfering with oxidative phosphorylation in the mitochondria,
causing death by depriving the organism of energy [51,52]. The growth regulator pyriproxyfen
is a juvenile hormone analogue that also offers a unique mode of action, inhibiting arthropod mor-
phogenesis, reproduction, and embryogenesis of insects [53]. In Anopheles mosquito species it
has been shown to cause sterility in adult females and shorten their lifespan [54].

In vector species from the An. gambiae complex, genetic mechanisms conferring target-site
resistance within genes encoding the Vgsc [19,55,56], the Gaba receptor (Figure 2) [46], and
AchE [49], have becomewidespread [23,24,36,37], resulting in phenotypic resistance to pyre-
throids, organochlorines, organophosphates and carbamates (Figure 2). For these forms of
target-site resistance, several genetic mutations that show associations with resistance pheno-
types have been identified (Table 1). Target site resistance mechanisms have not yet been iden-
tified for chlorfenapyr in An. gambiae complex species, although chlorfenapyr resistance has
evolved in other insect species and the genetic basis has been studied [52]. Recently, phenotypic
resistance to chlorfenapyr has been reported in An. gambiae populations in the Democratic
Republic of the Congo (DRC), Cameroon, and Ghana [57]. An. gambiae complex mosquitoes
remain largely susceptible to clothianidin [58], although strong phenotypic resistance to this
insecticide was found in some An. gambiae populations in Cameroon [29], with upregulation of
cytochrome P450 enzymes indicating underlying metabolic resistance mechanisms. It is also
likely that P450-mediated metabolic resistance may cause resistance to pyriproxyfen [59].
Trends in Parasitology, July 2024, Vol. 40, No. 7 607
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Figure 2. Multiple insecticide resistance (IR) mechanisms linked to IR phenotype in Anopheles gambiae.
Current IR mechanisms in malaria vector species may be broadly classified into six categories: target-site resistance;
metabolic detoxification; insecticide sequestration; microbial detoxification, cuticular resistance; and behavioural changes.
Implicated genes/proteins/biological markers involved per IR mechanism group are detailed.
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In the case of pyrethroid resistance, characterisation and validation of SNPs conferring target-site
resistance in the An. gambiae complex dates to the 1990s when two SNPs at the same locus in
the Vgsc gene, Vgsc-995F and Vgsc-995S, were found to confer ‘knock-down’ (kdr) resistance
to pyrethroids and DDT (Table 1) [55,56,60]. These two SNPs are commonly referred to as the
west and east African kdr mutations because Vgsc-995F was first detected in west Africa [55],
and is predominant there, while Vgsc-995S was more commonly reported in the east. Both
mutations occur throughout the east and west now; and they can co-occur in individual mosqui-
toes, which is common in parts of central Africa such as the DRC [36]. For both mutations,
genotype-phenotype associations have been repeatedly demonstrated using a range of
approaches (for a review see [60]). In the case of Vgsc-995F, a recent study used clustered
regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-editing techniques to
establish associations with resistance to pyrethroids and DDT by comparing mosquitoes with
susceptible and resistant alleles against the same genetic background [61], provided clear func-
tional validation of the role of this mutation in conferring resistance.

Genomic studies have identified several other mutations in the Vgsc that could potentially contribute
to IR, highlighting the complex genetic basis of target-site resistance in the An. gambiae complex
[19]. For some of these mutations, associations with resistance phenotypes have been demon-
strated (Table 1). The Vgsc-N1570Y mutation has been shown to intensify resistance to DDT and
pyrethroids and is linked with the Vgsc-995F genotype [62]. The Vgsc-402L mutation [19] has
been implicated in resistance to pyrethroids and DDT [63], and it confers a lower fitness cost on
the mosquito compared to Vgsc-995F under laboratory conditions, indicating a potential selective
advantage to this resistance mechanism.

While Vgsc resistance mechanisms have received the most extensive study, mutations in other
insecticide target sites that confer resistance to other insecticide types and classes have been
identified in theAn. gambiae complex (Table 1 and Figure 2). TwoSNPs in the ‘resistance to dieldrin’
(Rdl) locus that encodes a Gaba receptor subunit decrease susceptibility to dieldrin [48]. Despite
608 Trends in Parasitology, July 2024, Vol. 40, No. 7
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the ban on use of such cyclodienes in 2001 by the Stockholm Convention on Persistent Organic
Pollutants, due to slow environmental degradation, Rdl mutations have persisted decades later in
somemalaria vector populations [46]. Resistance to organophosphate and carbamate insecticides
is conferred by a SNP in the Ace-1 gene (G119S) that encodes for AChE causes insensitivity of the
enzyme [49,64,65] (Table 1 and Figure 2). This mutation incurs a high fitness cost, but duplications
have arisen whereby susceptible and resistant alleles occur on the same chromosome [66], poten-
tially reducing the fitness cost of this resistance mechanism [65,66].

Metabolic resistance
Ranson et al. [15] define metabolic resistance as ‘the overexpression of enzymes capable of
detoxifying or sequestering insecticides and/or amino acid substitutions within these enzymes
which alter the affinity of the enzyme for the insecticide’. Enzymes that detoxify insecticides
include certain cytochrome P450s, glutathione-S-transferases and carboxylesterases [15,20].
In comparison to target-site resistance, it has proven more difficult to identify genetic markers
associated with metabolic resistance [15,20,67,68]. Changes to metabolic gene expression are
conventionally assessed using qRT-PCR (quantitative real-time PCR) assays; however, the
cold-chain requirements to measure metabolic gene overexpression represents a barrier to
routine surveillance of these resistance mechanisms in resource poor settings. Encouragingly,
recent studies have made new discoveries of mutations within genes encoding detoxifying
enzymes that show associations with resistance phenotypes in An. gambiae complex members
(Table 1). A SNP in Cyp4j5, a cytochrome P450 gene, was found to be significantly associated
with resistance to permethrin in An. gambiae (Table 1; [67]) and a SNP in Coeae1d, a
carboxylesterase gene, was also significantly associated (Table 1 and Figure 2; [67]). Njoroge
et al. [39] identified a haplotype containing threemutations, including a SNP inCyp6p4, a transpos-
able element insertion, and a duplication of the Cyp6aa1 gene (Table 1). The first two of these
mutations are in tight linkage, with haplotypes containing only these two mutations being referred
to as double mutants, and haplotypes containing all three mutations being referred to as triple
mutants [39]. The triple mutant haplotype was found to be strongly associated with resistance to
deltamethrin and has spread rapidly in An. gambiae s.s. populations in Uganda, Kenya and the
DRC. The triple mutant is predominant, having replaced the double-mutant haplotype, suggesting
a strong selective advantage [39]. These findings add to the catalogue of genetic markers of
metabolic resistance in An. gambiae complex species. Previously, the only known DNA markers
of metabolic resistance were the SNPs in a glutathione-S-transferase gene, Gste2-114T and
Gste2-119V (Table 1 and Figure 2), which were found to confer resistance to DDT and permethrin
in An. gambiae s.s., respectively [24,69].

There is considerable uncertainty about the mechanisms underlying metabolic resistance and the
extent of their contribution to resistance phenotypes [68,70,71]. In West Africa intense pheno-
typic pyrethroid resistance (>1500-fold compared to a susceptible population) has been
reported from An. gambiae complex populations, with more modest overexpression of key cyto-
chrome P450s [72]. Synergistic effects of P450-mediated resistance and target-site mutations
have been reported [68,70], but the individual contribution of metabolic factors is unclear, and
may not to be linked to the extent of upregulation [68].

Gene expression can also be elevated by increases in copy number of genes (copy number
variants; CNVs) [23]. WGS analysis has revealed the importance of CNVs to IR, with a high pro-
portion of the genes that have been linked to IR having demonstrable CNVs [23]. Current
widescale CNV detection is based on qPCR assays, notably to estimateCyp6aa/Cyp6p duplica-
tions [39]. Elucidating the relative contribution of each CNV to IR is more challenging [23]. Across
West Africa, CNVs have been identified in Cyp6aa and Gste2 at high frequencies in An. coluzzii
Trends in Parasitology, July 2024, Vol. 40, No. 7 609
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populations, which were associated with deltamethrin resistance [38]. The gene clusters showing
CNVs are variable across different vector species, and subpopulations of a given species, com-
plicating detection and surveillance of these resistance mechanisms [38].

Regulation of particular metabolic genes, including Cyp6m2 and Gstd1, has been linked to expres-
sion levels of the transcription factor Maf-S; RNAi-attenuation of Maf-S significantly increased mor-
tality to DDT, permethrin and deltamethrin and decreased mortality to malathion, providing a
mechanistic explanation for negative cross-resistance between certain pyrethroids and organo-
phosphates [16]. There is evidence, however, that some cytochromeP450 activity may be regulated
by distant loci rather than directly by local variants [20,71,73]. The predictive value of DNAmarkers in
capturing the phenotype contribution of metabolic resistance is therefore uncertain [20,68].

Other resistance mechanisms
The complexity of IR is increasingly being demonstrated, with studies finding potentially extensive
polygenicity in resistance mechanisms [16,17,19,23,24,37,74], and heterogeneity in genetic
mechanisms across species and geographic locations [16–18,36–38]. In addition to target-site
and metabolic resistance, there are others, with recent studies revealing a widening array of
mechanisms operating through different biological functions within the mosquito (Figure 2).
Cuticular resistance, whereby mosquitoes resist insecticides through thickening of the epicuticle
layer and greater cuticular hydrocarbon (CHC) content [21,22] has been associated with
increased expression of two cytochrome P450 genes,Cyp4g16 andCyp4g17 [21,68]. Recently,
ABC transporters, proteins that mediate efflux of foreign compounds from cells, were found to be
differentially expressed in pyrethroid resistant An. gambiae mosquitoes and enriched in the legs
[75]. Similarly, hexamerins and α-crystallins, which play binding and storage roles, have been
implicated in pyrethroid resistance and may function by sequestering insecticides [17]. Other
gene families involved in transportation, including salivary proteins (e.g., D7r4), are also upregu-
lated in resistant An. gambiae, resulting in increased pyrethroid resistance via insecticide seques-
tration, rather than direct detoxification [17,74,76]. Expression of a chemosensory protein (SAP2),
enriched in the head and legs of An. gambiae has been shown to mediate pyrethroid resistance
by binding at point of insecticide contact [77]. In An. coluzzii, resistant mosquitoes display
increased respiration through changes in entire metabolic pathways, linked to genes involved in
oxidative phosphorylation [16]. In addition to host-mediated resistance mechanisms, evidence
is emerging that alterations to the mosquito microbiota can also contribute to IR, likely via endo-
symbiont degradation of insecticides [78]. Unfortunately, there are currently no known DNA
markers for these variety of IR mechanisms beyond target-site and metabolic resistance.

Other knowledge gaps present a challenge to developing a full understanding of genetic resis-
tance mechanism in malaria vector species. Shifts in mosquito behaviour that allow them to
avoid contact with insecticides, for example by biting humans outdoors and/or during day or
evening hours, has become amajor problem contributing to the declining efficacy of indoor insec-
ticidal interventions, including ITNs and IRS [79–81]. A genetic component associated with host
choice in An. arabiensis may involve paracentromeric inversions of chromosomes 2Rb and/or
3RA; however, the heritable mechanisms of these behavioural changes require further investiga-
tion [82]. Interestingly, the 2Rb inversion has also shows an association with insecticide resis-
tance in An. coluzzii [16], indicating that chromosomal inversions are another resistance
mechanism that could potentially inform genetic surveillance.

Genetic resistance mechanisms and associated markers in the An. funestus group
Compared to An. gambiae, the genetic resistancemechanisms present in the An. funestus group
are less clearly defined. A SNP at N485I in Ace-1 has been found to be associated with
610 Trends in Parasitology, July 2024, Vol. 40, No. 7
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carbamate resistance [83], and a point mutation in the Rdl locus that encodes the Gaba receptor
subunit, also shared with An. gambiae, confers resistance to dieldrin [46]. More recently Vgsc-
976F (equivalent to Vgsc-1014F in An. gambiae) was identified, in tight linkage disequilibrium
with Vgsc-1842S, in An. funestus which had higher survivorship to DDT [84] (Table 2). Most
studies on An. funestus indicate that metabolic overexpression of cytochrome P450s drives IR
in this vector species. A mutation in the gene Gste2 (Gste2-L119F) has been implicated in resis-
tance to DDT, pyrethroids and neonicotinoids ([73,85]; Table 2). Several cytochrome P450
genes, including Cyp6z1 [83], Cyp6p4a [86], Cyp6n1 [87], Cyp9k1 [88], and Cyp6m7 [89] are
commonly overexpressed in resistant An. funestus populations. Overexpression of Cyp6p9a
and Cyp6p9b, mediated by structural changes to transcription factor binding sites (cis-
regulatory elements), also plays a key role in pyrethroid resistance and can result in reduced
bioefficacy of ITNs ([9,86,89,90]; Table 2). Patterns of cytochrome P450 overexpression may
be broadly associated with geography, with different complements of genes upregulated
among distinct resistant An. funestus vector populations in west and east Africa (with Cyp6p9a,
Cyp6p9b, and Gste2 predominating in the west, and Cyp6m4, Cyp9k1, Cyp6m7, Cyp6n1,
Cyp6m1, and Cyp6z1 in the east) recently reviewed [91]. The prevalence of alternate IR mecha-
nisms present in An. funestus is largely unknown due to a relative paucity of exploratory datasets,
by comparison to An. gambiae.

Characterising resistance phenotypes
To determine functional associations between IR mechanisms and phenotypic resistance
(Figure 1B), it is essential to first characterise mosquito phenotype prior to performing a
genome-wide association study (GWAS). Phenotypic IR among Anopheles vector popula-
tions is conventionally established using standard bioassays [92] which measure mosquito
mortality following exposure inside plastic tubes to filter papers containing a discriminating
concentration (DC) of insecticide or glass bottles coated with a diagnostic dose (DD) of insec-
ticide. This approach to quantifying phenotypes faces difficulties with high test variability and non-
standard outcomes across assays and may not provide measures that are operationally relevant
to the efficacy of insecticidal vector control tools in field settings (Box 1).

Spatiotemporal trends in IR
IR is a dynamic phenomenon that can evolve rapidly in natural mosquito populations, particularly
in response to environmental selection pressures (Figure 1). Rapid increases in resistance pheno-
types and genetic mechanisms associated with the widespread implementation of ITN interven-
tions in sub-Saharan Africa since the early 2000s [93] have been observed. In the case of
pyrethroid target site mutations, haplotype diversity analyses have shown evidence of selective
sweeps in both the Vgsc-995F and Vgsc-995S mutations in mosquitoes from west and east
Table 2. Genetic markers that show associations with IR phenotypes in the An. funestus group

Mechanism Susceptible allele Resistance alleles Insecticide types Refs

Target site

Acetylcholinesterase insensitivity Ace-1-485N Ace-1-485I Carbamates [83]

Gaba receptor Rdl-A296 Rdl-296S Organochlorines [46]

Voltage-gated sodium channel Vgsc-976L + Vgsc-1842P Vgsc-976F + Vgsc-1842S DDT [84]

Metabolic

Cytochrome P450 overexpression Cyp6p9a Presence of CCAAT box and CnCC/MafK binding sites Pyrethroids [90]

Cytochrome P450 overexpression Cyp6p9b Presence of CCAAT box, CncC nrf2/MAF binding sites Pyrethroids [9]

Glutathione S-transferase overexpression Gste2-119L Gste2-119F DDT, Permethrin [116]

Trends in Parasitology, July 2024, Vol. 40, No. 7 611

CellPress logo


Box 1. Challenges in characterising susceptibility to novel insecticides

• Standardised WHO and CDC IR bioassays have issues with direct quantitative comparability between outcome
measurements due to differences in insecticide doses used, diagnostic exposure and holding times.

• Testing methodologies for novel, slow-acting insecticides, including clothianidin and chlorfenapyr and non-neurotoxic
chemicals (such as pyriproxyfen), cannot rely on the same end-point mortality outcomes used for other public health
insecticides.

• Differences in rearing conditions of insectary Anopheles colony strains, including larval conditions (e.g. crowding,
access to nutrition etc.), time of testing (e.g., night or day), temperature and humidity, mosquito age, and physiological
stage can all influence observed bioassay mortality [110], and therefore constitute a source of variability when estab-
lishing new DDs.

• Long-termmaintenance of insectary colonies in independent testing facilities can also lead to differences in relative colony
fitness, following genetic divergence over time, with several studies reporting discordant bioassay data using the same
strains, advocating for periodic in-depth strain characterisation at both phenotypic and genotypic levels [111,112].

• All of these factors need to be considered during DD discovery, to differentiate between detection of incipient resistance
to novel insecticides, rather than pre-existing natural tolerance among wild vector populations [57,113].

• While phenotypic bioassays are crucial to distinguish insecticide resistant individuals per population for downstream
genetic analysis, one final limitation is how vector survival in a bioassay relates to intervention operational efficacy. For
example, exposure of mosquito strains classified as resistant to the DC of deltamethrin in WHO tube tests exhibited
>90% mortality over 24 h following deltamethrin ITN contact, complicating the functional consequences of vector
populations demonstrating IR in bioassays [114].
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Africa, which were supported by an observed rapid increase in the frequency of the Vgsc-995F
mutation in An. coluzzii populations in Ghana over a period of approximately 100 generations from
2002 to 2011 [40,94]. Similarly, a strong rise in Vgsc-995F frequencies was seen in An. coluzzii
populations in Burkina Faso from 2000 to 2006 [95]. The spread of Vgsc-995F in An. coluzzii
has resulted from adaptive introgression from An. gambiae through hybridisation between the
two sibling species [96], with WGS showing that this has involved transfer of a large genomic
region surrounding the Vgsc gene from An. gambiae to An. coluzzii [40]. Temporal increases in
frequencies of Vgsc-995S in east Africa have also been observed, with a study in Burundi showing
a rise in frequency in An. gambiae s.l. from around 1% to as high as 86% from 2002 to 2007 in
association with an upscaling of IRS and ITN interventions [97]. While the Vgsc-995F mutation
has historically been uncommon in east Africa [36], it was detected in western Kenya in 2014
[98]. Recent surveillance data collected throughout a large region of Uganda as part of a cluster
randomised controlled trial (CRCT) to assess the epidemiological impacts of a rollout of ‘new
nets’ showed spatial spread and propagation of Vgsc-995F in western parts of Uganda, where
it is thought to have migrated from neighbouring regions in the DRC [99].

Increases in metabolic resistance mechanisms have also been seen in wild Anopheles popula-
tions. In An. funestus populations from southern Africa (Malawi andMozambique), WGS analyses
revealed that Cyp6p9a has swept to fixation during the period post-ITN deployment throughout
the region, but this did not occur in An. funestus populations from more northern areas [6]. In
An. gambiae from Bioko Island, two cytochrome P450 genes, Cyp9k1 and Cyp6p3, showed
increased expression over the period 2011–2015 during which both pyrethroid-based IRS and
ITN usage was scaled up [100]. In An. gambiae populations from areas of Uganda, Kenya and
the DRC, WGS analyses identified a haplotype involving a trio of mutations in the Cyp6aa/
Cyp6p genomic region which has swept to near fixation over the period 2008–2018 and is
strongly associated with resistance to deltamethrin [39]. In eastern regions of Uganda where
this ‘triple mutant’ was uncommon in 2018, further increases in frequency have been observed
following a rollout of ‘new net’ interventions [99].

Many of the insecticides used in malaria vector control are the same as those used in agricultural
practices throughout sub-Saharan Africa, including insecticides from the pyrethroid, neonicotinoid,
organophosphate and carbamate classes. The use of insecticides in agriculture has been associated
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with higher levels of IR in malaria vector populations. A meta-analysis evaluating the relationship
between agricultural insecticide use and IR found that 23 out of 25 studies reported an association
[101]. More recent studies have found high and increasing levels of resistance to pyrethroids, carba-
mates and DDT, andmoderate resistance tomalathion, in agricultural areas of sub-Saharan Africa. In
these areas, usage of agricultural pesticides was found to be poorly controlled, and there was a
limited awareness of the issue of IR amongst local communities [102,103].

Detecting trends in resistance through geospatial surveillance
The aforementioned illustrations of the complex dynamics of IR highlight the need for continued
surveillance of resistance in malaria vector populations. IR can be highly spatially heterogeneous,
and an expansive spatial coverage of surveillance data is needed to accurately quantify trends in
resistance. For example, marked differences in the frequencies of different genetic resistance
mechanisms were found between An. gambiae complex species sampled from different places
within south-west Burkina Faso [18]. Strategic deployment of vector control interventions includ-
ing new types of ITNs and IRS requires knowledge of resistance profiles across all administrative
planning units. Geostatistical models fitted to surveillance data on resistance phenotypes [5] and
genetic mechanisms [36] have demonstrated good accuracy in spatial extrapolation across data
sparse regions. These models have been used to generate predictive maps of resistance which
can provide estimates in areas that are not well surveyed (Figure 1B). Moreover, model-
based approaches can identify underlying trends in noisy surveillance data and have revealed
patterns of association between different types of phenotypic resistance [104], and between
phenotypes and genetic mechanisms [36].

The genetic surveillance of IR conducted throughout the Uganda LLINEUP trial provides an
encouraging example of the value of longitudinal surveillance with comprehensive spatial coverage
in revealing trends [99]. The study demonstrated increases and spatiotemporal expansion in three
genetic mutations associated with pyrethroid resistance following a nationwide rollout of different
types of ‘new nets’. We used the time series of fine-resolution predictive maps produced by
Lynd et al. 2024 [99] to develop estimates of the average rate of increase in the frequency of
Vgsc-995F for each of the level two administrative planning units in Uganda (Figure 3). This high-
lights areas in the northwest where this form of resistance is spreading quickly, as well as
neighbouring areas that are at high risk of further increases and warns that a decline in vector
control efficacy may be expected in these areas.

Investigating links between IR and malaria vector control
Understanding the impacts of IR on the efficacy of insecticidal vector-control interventions in
controlling malaria is clearly critical in allowing knowledge and surveillance of resistance to inform
intervention deployment (Figure 1D). These relationships have, however, proven difficult to quan-
tify [105,106]. Nonetheless, recent results from CRCTs of different types of ‘new nets’ indicate
that ITN efficacy is improved when they incorporate insecticide combinations among resistant
vector populations. Two CRCTs conducted in Tanzania [12] and Uganda [14] both found that
ITNs incorporating a pyrethroid (either deltamethrin or permethrin) plus PBO were significantly
more effective in reducing malaria prevalence than standard pyrethroid-only ITNs. Two CRCTs
conducted in Tanzania [11] and Benin [13] found that ITNs incorporating the pyrethroid alpha-
cypermethrin plus chlorfenapyr showed substantially higher efficacy, however the first of these
trials found the efficacy of pyrethroid-PBO nets to be similar to pyrethroid-only nets [11]. These
trials also assessed ‘new nets’ incorporating alpha-cypermethrin and pyriproxyfen and found
that their efficacy was similar to pyrethroid-only ITNs [11,13]. However, an earlier CRCT con-
ducted in Burkina Faso did find that nets containing pyriproxyfen gave more protection against
malaria, compared to pyrethroid-only ITNs [27].
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Figure 3. Increases in the frequency and spatial spread of Vgsc-995F in Uganda following deployment of
insecticide-treated bednets. (A) The predicted average annual rate of increase in the frequency of Vgsc-995F in
Anopheles gambiae populations over the duration of the Uganda LLINEUP study (2017–2019) in each level two administrative
area. Rates of increase for each administrative area are the average across all pixels in each area of the mean values of fine-
resolution predictive maps [99]. (B) Frequencies of Vgsc-995F in An. gambiae over time for the top 15% of administrative
areas with the highest average annual rates of increase (A).
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Outstanding questions
How well can the set of known
insecticide resistance-associated ge-
netic variants occurring in different
malaria vector species predict the
operational efficacy of current ITN and
IRS products in controlling malaria?

How specific are insecticide resistance
mechanisms to individual insecticides
or insecticide classes, and what is
the likelihood of selecting for cross-
resistancemechanisms following inter-
vention deployment?

What insecticide resistancemanagement
(IRM) strategies will effectively mitigate
against the spread of resistance that
follows the upscaling of insecticidal
interventions? What IRM strategies will
be pragmatic for control programmes
that are limited in their capacity for resis-
tance surveillance and their ability to
deploy new tools in the face of rising
resistance?

What capacities and resources can be
developed to allow national malaria
control programmes to screen for an
array of resistance-associated genetic
variants in routine surveillance?

Can genomic methods enable
quantification of the resistance
intensity of metabolic resistance in
field vector populations as part of
routine surveillance?

Can genetic surveillance detect the
early emergence of novel insecticide
resistance mechanisms in vector
populations?

Do frequencies of resistance-associated
genetic variants in vector species popula-
tions show predictable spatiotemporal
relationships that can be reliably extrapo-
lated across unsampled geographic
areas? Can these trends provide early
warning of the spatial spread of resis-
tance across connected regions?
Experimental hut trials (EHTs) examining the efficacy of ITNs on personal protection demon-
strated the effects of IR in reducing mortality of host-seeking female mosquitoes and increasing
blood-feeding rates. A meta-analysis of 34 EHTs where volunteers slept under pyrethroid-only
ITNs found that phenotypic pyrethroid resistance, as measured by standard susceptibility
tests, was associated with higher survival rates among mosquitoes entering experimental huts
[107]. Surviving mosquitoes also had a greater probability of successfully blood feeding [107].
Similar trends have also been found in EHTs assessing pyrethroid IRS insecticides [108]. EHTs
have also implicated genetic mechanisms of resistance in reducing ITN efficacy. In An. funestus,
SNPs in the metabolic resistance genes Gste2, Cyp6p9a and Cyp6p9b have been associated
with greater blood feeding success [89,90,109] and higher survival [89,90] in EHTs.

Concluding remarks
Despite the open questions surrounding the epidemiological implications of IR (see Outstanding
questions), the observed increases and spread of multiple types of resistance following the upscaling
of insecticide-based vector control interventions is highly concerning [87] (e.g., Figure 3). African
malaria vectors are still largely susceptible to newer vector-control insecticides, including chlorfenapyr,
clothianidin, and broflanilide [58], and the longevity of new ITN and IRS products depends on our
ability to prevent vectors from developing resistance to these different insecticide modes of action.
Here we have provided information on a catalogue of markers that can potentially be incorporated
into routine screening to detect local rates of increase and spatial spread of important resistance
mechanisms, serving as an early warning system for geographically contiguous regions. This is
only a partial representation of the resistance profiles present in local vector populations, and con-
tinuing advances in WGS analyses will be invaluable in developing improved strategies for genetic
surveillance going forward. Surveillance of resistance phenotypes remains important given the
uncertainty surrounding the influence of genetic mechanisms on the phenotype, and guidelines
for intervention deployment need to be based on both genetic and phenotypic information [32].
While not covered in our review, other vector species also play an important role in malaria trans-
mission in Africa, including other species from the An. gambiae complex as well as the invasive
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urban malaria vector An. stephensi. Relatively little is known about genetic IR mechanisms in these
species, which is a barrier to developing strategies for resistance management and surveillance
that account for the variety of species that comprise malaria vector populations.

The costs and resources associatedwith resistance surveillance present a significant challenge to
its scalability and incorporation into national malaria control programmes. GWAS and phenotypic
studies to validate GWAS hits are an order of magnitude more expensive than routine molecular
surveillance, meaning that detailed characterisations of local resistance mechanisms cannot typ-
ically inform timely, responsive decision making. Moreover, with increasing GWAS studies, the
number of putative SNPs and other genetic variants is set to increase, thus research efforts
must also be dedicated to functional validation of resistance-associated loci to optimise the de-
sign of marker panels for genetic surveillance. The procurement of new net and IRS products is
also inevitably financially constrained, restricting the areas that can receive new interventions
that are available for resistance management (see Outstanding questions). Given the limited ca-
pacity of national control programmes to respond rapidly to increasing resistance, pragmatic
evidence-based resistance management strategies are needed to protect the longevity of the
cadre of currently effective insecticides.
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